La Bnbox !

Créateur de sourires...

Mon compte

S'inscrire

Recherche

Vous êtes ici : Accueil » Concours » Grandes écoles » PSI (type Centrale) - Exercice d'oral [Intégrale, Décomposition en éléments simples]

Concours



« Article précédent - Sommaire - Article suivant »

Grandes écoles : PSI (type Centrale) - Exercice d'oral [Intégrale, Décomposition en éléments simples]

Calculer l'intégrale suivante :
I = \int_0^{\frac{\pi}{2}} \sqrt{\tan(\theta)}\, \mathrm d \theta
Eléments de réponse

  • Commencez par vérifier que cette intégrale est bien intégrable.
  • Ensuite, faites un changement de variables.
  • Il ne reste plus qu'à décomposer en éléments simples... Et c'est là que ça se complique. Bon courage bn_wink

Réponse

  • Intégrabilité : Le seul problème est en \frac{\pi}{2}, donc posons \theta = \frac{\pi}{2} - \epsilon\epsilon tend vers 0.
    Alors \tan(\theta) = \frac{1}{\tan(\epsilon)}
    Donc en effectuant un DL (ordre 1) de \sqrt{\tan(\theta)}, on voit que cette fonction converge. Donc elle est intégrable sur \left[0,\frac{\pi}{2}\right[
  • Changement de variable avec u = \sqrt{\theta} donc \mathrm{d}u = \frac{1+u^4}{2u} \mathrm{d}\theta. On a alors :
    I = \int_0^{+ \infty} \frac{2u^2}{1+u^4} \mathrm{d}u
  • Et là deux solutions s'offrent à nous, soit on fait la décomposition en éléments simples avec pleins de calculs, soit on décompose en réles, ce qui allège un peu les calculs. Je détaille ci-dessous le début de la première méthode, puis rapidement la deuxième.
    • Cherchons les racines du dénominateur :
      1+u^4 = 0 \,\, \Longleftrightarrow \,\, u^4=-1=1 \, e^{i \pi} \,\, \Longleftrightarrow \,\, u=\sqrt[4]{1} \, e^{i \frac{\pi}{4}} = \sqrt[4]{1} \omega
      Donc (1+u^4) = (1+\omega)(1-\omega)(1+i \omega)(1-i \omega)
      Il ne reste plus qu'à trouver les quatre constantes de la décomposition en éléments simples.
    • On décompose en réel :
      1+u^4 = (u^2+1)^2 + (\sqrt{2}u)^2 = (u^2 - \sqrt{2}u +1)(u^2 + \sqrt{2}u +1)
      On doit donc trouver quatre constantes :
      \frac{2u^2}{(u^2 - \sqrt{2}u +1)(u^2 + \sqrt{2}u +1)} = \frac{Au+B}{(u^2 + \sqrt{2}u +1)} + \frac{Cu+D}{(u^2 - \sqrt{2}u +1)}
      On peut remarquer que u \rightarrow 0 \,\, \Longrightarrow \,\, B=-D et \times u, \, u \rightarrow + \infty \,\, \Longrightarrow \,\, A=-C
      On remplace, on développe et on trouve : B=D=0 et C=-A=-\frac{\sqrt{2}}{2}
  • Reste à calculer I... On pose : X \,\, \rightarrow \,\, + \infty. On a : (1 \pm \sqrt{2}u+u^2)' = (2u \pm \sqrt{2}). On a alors :
    \int_0^{X} \frac{u}{1 \pm \sqrt{2}u+u^2} \mathrm{d}u = \frac{1}{2} \int_0^{X} \frac{(2u \pm \sqrt{2}) \mp \sqrt{2}}{1 \pm \sqrt{2}u+u^2} \mathrm{d}u = \frac{1}{2} \int_0^{X} \frac{2u \pm \sqrt{2}}{1 \pm \sqrt{2}u+u^2} \mathrm{d}u \, \mp \, \frac{\sqrt2}{2} \int_0^{X} \frac{\mathrm{d}u}{1 \pm \sqrt{2}u+u^2}
    Sachant que :
    \int_{}^{} \frac{u'}{u}\mathrm{d}u = \ln(u)
    \int_{}^{} \frac{\mathrm{d}u}{u^2+a^2} = \frac{1}{a} \arctan(\frac{u}{a})
    En terminant les calculs et en prenant les deux parties de l'intégrales, on obtient : I = \color{Red}\frac{\sqrt{2} \pi}{2}



Cet exercice peut s'avérer délicat à certains endroits, et ce qui est exposé ici est la démarche générale, sans entrer dans les détails. Si vous avez un problème à un endroit de la résolution, vous pouvez poser vos questions sur le Bar à Nougat.


Ailleurs sur la Bnbox

Ailleurs sur la Toile

Mini-tchat

?

kakhsks griffonne : Ksgdkrhfkdhdj Aujourd'hui, 17h20 via Résumé - Le Médecin Malgrè ...

Benoît #Komandir murmure : Salut les frr Hier, 15h00 via Accueil

benoit scribouille : Je suis un cancre Hier, 14h59 via Accueil

jawad déclame : 9a7ba Hier, 14h59 via Accueil

Benoît #Komandir proclame : C'qui griffonne? ROBIN T MORT Hier, 14h59 via Accueil

Benoît #Komandir déclare : J'vais te tuer Hier, 14h53 via Accueil

benoit griffonne : Bandouuu Hier, 14h51 via Accueil

Benoît #Komandir scribouille : T'es qui ? :'( Hier, 14h47 via Accueil

Benoît #Komandir tergiverse : Coucou Hier, 14h42 via Accueil

jawad écrit : Wsh Hier, 14h42 via Accueil

soumia s'exclame : Robin t'es bete Hier, 14h40 via Accueil

Bnmaster déclame : Il reste des petits bugs sur le forum. Hier, 9h44 via Accueil

Bnmaster déclame : Mini-tchat réparé mini_bn Hier, 9h44 via Résumé du livre : Le Cid de...

gloriacodjiovoie@gmail.com gribouille : J'ai lu de livre en médecin Le 13 janvier, 13h23 via Texte intégral - Le Médecin...

59 c les falanpin murmure : J'ai travaillé, révisé lu, des résumés j'ai eu 8.5/20 le français serre vraiment à rien ,j'ai compris le livre je vois pas qu'est ce que je peux faire d'autre Le 12 janvier, 22h04 via Fiches sur les personnages ...

pas moi écrit : Est ce que cette pièce est tragique? Le 11 janvier, 15h05 via Résumé du livre : Le Cid de...

Bnmaster écrit : Petit souci dans le mini-tchat en ce moment... un F5 est nécessaire tant que je n'aurais pas réglé le souci. Désolé >< Le 11 janvier, 9h09 via Résumé scène par scène - Le...

moliere lover tergiverse : J'adore Molière Le 10 janvier, 0h32 via Résumé : L'Avare

johnnysquade gribouille : La promesse de l'aube Le 09 janvier, 18h17 via Romain Gary : La Promesse d...

piou5 s'exclame : Cc sa vas Le 09 janvier, 10h40 via Résumé scène par scène - Le...

piu déclare : Cc Le 08 janvier, 18h45 via Résumé scène par scène - Le...

7 dit : 7 Le 08 janvier, 17h14 via Résumé : Andromaque

EARL chuchote : Salut Le 08 janvier, 17h04 via Résumé : Andromaque

EARL gribouille : Salut Le 08 janvier, 17h04 via Résumé : Andromaque

EARL déclare : Salut Le 08 janvier, 17h04 via Résumé : Andromaque

EARL chuchote : Salut Le 08 janvier, 17h04 via Résumé : Andromaque

Anonimous écrit : Merci c'est trop cool pour ce resumé Le 08 janvier, 16h06 via Résumé - Les Fourberies De ...

$ chuchote : 10 Le 08 janvier, 15h34 via Résumé - Le Médecin Malgrè ...

coucou gribouille : Salut Le 07 janvier, 11h21 via Résumé : Le Tartuffe de Mol...

lkj dit : Yuty Le 05 janvier, 18h22 via Résumé - Les Fourberies De ...

Juldu75 déclame : Abau nez vous a ma chène mrdrigzou officiel mersi les amies Le 04 janvier, 21h20 via Fiches sur les personnages ...

Couci couca bafouille : Coucou Le 04 janvier, 13h41 via Résumé scène par scène - Le...

BRRFRFRFRT s'exclame : TRES BON cite tt sorte de livre a chercher pour en faire de s resume comme moi jai eu besoin de faire un resumer je suis parti directement sur ce site

franchement merci beaucoup
Le 04 janvier, 13h32 via Résumé - Les Fourberies De ...

bouh écrit : Salut les gens Le 03 janvier, 14h46 via Résumé : Andromaque

bouh déclame : Salut les gens Le 03 janvier, 14h46 via Résumé : Andromaque

bouh tergiverse : Salut les gens Le 03 janvier, 14h46 via Résumé : Andromaque

bouh déclame : Salut les gens Le 03 janvier, 14h35 via Résumé : Andromaque

bouh griffonne : Salut les gens Le 03 janvier, 14h35 via Résumé : Andromaque

acemi murmure : Je savais pas qu'il fallais faire F5 pour voir mon message désolé Le 02 janvier, 21h04 via Résumé scène par scène - Le...

acemi scribouille : Sa va????? Le 02 janvier, 21h03 via Résumé scène par scène - Le...

acemi écrit : Sa va????? Le 02 janvier, 21h03 via Résumé scène par scène - Le...

acemi gribouille : Sa va????? Le 02 janvier, 21h03 via Résumé scène par scène - Le...

acemi gribouille : Sa va????? Le 02 janvier, 21h01 via Résumé scène par scène - Le...

acemi s'exclame : Coucou Le 02 janvier, 20h19 via Résumé scène par scène - Le...

Le Con ;D dit : Il é supèr le résumer mai du cou c tro facil Le 02 janvier, 18h04 via Résumé scène par scène - Le...

Le Con ;D chuchote : Il é supèr le résumer mai du cou c tro facil Le 02 janvier, 18h04 via Résumé scène par scène - Le...

Le Con ;D bafouille : Il é supèr le résumer mai du cou c tro facil Le 02 janvier, 18h04 via Résumé scène par scène - Le...

Le Con ;D bafouille : Il é supèr le résumer mai du cou c tro facil Le 02 janvier, 17h30 via Résumé scène par scène - Le...

Le Con ;D tergiverse : Il é supèr le résumer mai du cou c tro facil Le 02 janvier, 17h30 via Résumé scène par scène - Le...

Le Con ;D bafouille : Il é supèr le résumer mai du cou c tro facil Le 02 janvier, 17h30 via Résumé scène par scène - Le...

Publicité



©Bnbox (Infos) - Cahier de l'élèves - Atelier webmaster - Boîte à Nuts - Bar à Nougat - Plus ou moins valide XHTML 1.0, CSS 2, RSS 2.0
Flux RSS