La Bnbox !

Créateur de sourires...

Mon compte

S'inscrire

Recherche

Vous êtes ici : Accueil » Concours » Grandes écoles » PSI (type Centrale) - Exercice d'oral [Intégrale, Décomposition en éléments simples]

Concours



« Article précédent - Sommaire - Article suivant »

Grandes écoles : PSI (type Centrale) - Exercice d'oral [Intégrale, Décomposition en éléments simples]

Calculer l'intégrale suivante :
I = \int_0^{\frac{\pi}{2}} \sqrt{\tan(\theta)}\, \mathrm d \theta
Eléments de réponse

  • Commencez par vérifier que cette intégrale est bien intégrable.
  • Ensuite, faites un changement de variables.
  • Il ne reste plus qu'à décomposer en éléments simples... Et c'est là que ça se complique. Bon courage bn_wink

Réponse

  • Intégrabilité : Le seul problème est en \frac{\pi}{2}, donc posons \theta = \frac{\pi}{2} - \epsilon\epsilon tend vers 0.
    Alors \tan(\theta) = \frac{1}{\tan(\epsilon)}
    Donc en effectuant un DL (ordre 1) de \sqrt{\tan(\theta)}, on voit que cette fonction converge. Donc elle est intégrable sur \left[0,\frac{\pi}{2}\right[
  • Changement de variable avec u = \sqrt{\theta} donc \mathrm{d}u = \frac{1+u^4}{2u} \mathrm{d}\theta. On a alors :
    I = \int_0^{+ \infty} \frac{2u^2}{1+u^4} \mathrm{d}u
  • Et là deux solutions s'offrent à nous, soit on fait la décomposition en éléments simples avec pleins de calculs, soit on décompose en réles, ce qui allège un peu les calculs. Je détaille ci-dessous le début de la première méthode, puis rapidement la deuxième.
    • Cherchons les racines du dénominateur :
      1+u^4 = 0 \,\, \Longleftrightarrow \,\, u^4=-1=1 \, e^{i \pi} \,\, \Longleftrightarrow \,\, u=\sqrt[4]{1} \, e^{i \frac{\pi}{4}} = \sqrt[4]{1} \omega
      Donc (1+u^4) = (1+\omega)(1-\omega)(1+i \omega)(1-i \omega)
      Il ne reste plus qu'à trouver les quatre constantes de la décomposition en éléments simples.
    • On décompose en réel :
      1+u^4 = (u^2+1)^2 + (\sqrt{2}u)^2 = (u^2 - \sqrt{2}u +1)(u^2 + \sqrt{2}u +1)
      On doit donc trouver quatre constantes :
      \frac{2u^2}{(u^2 - \sqrt{2}u +1)(u^2 + \sqrt{2}u +1)} = \frac{Au+B}{(u^2 + \sqrt{2}u +1)} + \frac{Cu+D}{(u^2 - \sqrt{2}u +1)}
      On peut remarquer que u \rightarrow 0 \,\, \Longrightarrow \,\, B=-D et \times u, \, u \rightarrow + \infty \,\, \Longrightarrow \,\, A=-C
      On remplace, on développe et on trouve : B=D=0 et C=-A=-\frac{\sqrt{2}}{2}
  • Reste à calculer I... On pose : X \,\, \rightarrow \,\, + \infty. On a : (1 \pm \sqrt{2}u+u^2)' = (2u \pm \sqrt{2}). On a alors :
    \int_0^{X} \frac{u}{1 \pm \sqrt{2}u+u^2} \mathrm{d}u = \frac{1}{2} \int_0^{X} \frac{(2u \pm \sqrt{2}) \mp \sqrt{2}}{1 \pm \sqrt{2}u+u^2} \mathrm{d}u = \frac{1}{2} \int_0^{X} \frac{2u \pm \sqrt{2}}{1 \pm \sqrt{2}u+u^2} \mathrm{d}u \, \mp \, \frac{\sqrt2}{2} \int_0^{X} \frac{\mathrm{d}u}{1 \pm \sqrt{2}u+u^2}
    Sachant que :
    \int_{}^{} \frac{u'}{u}\mathrm{d}u = \ln(u)
    \int_{}^{} \frac{\mathrm{d}u}{u^2+a^2} = \frac{1}{a} \arctan(\frac{u}{a})
    En terminant les calculs et en prenant les deux parties de l'intégrales, on obtient : I = \color{Red}\frac{\sqrt{2} \pi}{2}



Cet exercice peut s'avérer délicat à certains endroits, et ce qui est exposé ici est la démarche générale, sans entrer dans les détails. Si vous avez un problème à un endroit de la résolution, vous pouvez poser vos questions sur le Bar à Nougat.


Ailleurs sur la Bnbox

Ailleurs sur la Toile

Mini-tchat

?

MortaleX tergiverse : Tu veux voire ma putain de bitte de merde a chier Hier, 18h46 via Résumé - Les Fourberies De ...

MortaleX dit : Coucou tu veux voire ma bitte Hier, 18h46 via Résumé - Les Fourberies De ...

hihan tergiverse : A Le 23 mars, 15h01 via Les avantages et les risque...

hihan scribouille : A Le 23 mars, 15h01 via Les avantages et les risque...

hihan griffonne : A Le 23 mars, 15h01 via Les avantages et les risque...

hihan griffonne : A Le 23 mars, 15h01 via Les avantages et les risque...

hihan chuchote : A Le 23 mars, 15h01 via Les avantages et les risque...

hihan déclare : A Le 23 mars, 15h01 via Les avantages et les risque...

hihan écrit : A Le 23 mars, 15h01 via Les avantages et les risque...

hihan tergiverse : A Le 23 mars, 15h01 via Les avantages et les risque...

hihan déclare : A Le 23 mars, 15h01 via Les avantages et les risque...

hihan murmure : A Le 23 mars, 15h01 via Les avantages et les risque...

hihan griffonne : A Le 23 mars, 15h01 via Les avantages et les risque...

hihan griffonne : A Le 23 mars, 15h01 via Les avantages et les risque...

hihan dit : A Le 23 mars, 15h01 via Les avantages et les risque...

hihan écrit : A Le 23 mars, 15h01 via Les avantages et les risque...

hihan s'exclame : A Le 23 mars, 15h01 via Les avantages et les risque...

hihan bafouille : Asdasdasdasdasdasdasd Le 23 mars, 15h00 via Les avantages et les risque...

5 griffonne : Patate Le 23 mars, 15h00 via Les avantages et les risque...

5 déclare : Yo Le 23 mars, 15h00 via Les avantages et les risque...

nénette gribouille : Médecin malgré lui résumé bien!!!!!!
oreijas goate!!!!!
Le 22 mars, 21h41 via Résumé - Le Médecin Malgrè ...

ta mere déclare : Salut Le 22 mars, 16h39 via Résumé : Andromaque

bebou griffonne : Trop bien le site Le 22 mars, 15h52 via Résumé - Les Fourberies De ...

Le copié qui est collé griffonne : Quel école vous? Le 20 mars, 18h00 via Résumé - Les Fourberies De ...

Le copié qui est collé gribouille : Voila tout bn_wink Le 20 mars, 17h59 via Résumé - Les Fourberies De ...

arnaud du 24 scribouille : Trop frais Le 20 mars, 15h31 via Résumé scène par scène - Le...

fff chuchote : 4wt Le 20 mars, 2h27 via Résumé : Andromaque

fff scribouille : W4t Le 20 mars, 2h27 via Résumé : Andromaque

fff tergiverse : Ag Le 20 mars, 2h27 via Résumé : Andromaque

fff déclame : Sga Le 20 mars, 2h27 via Résumé : Andromaque

fff chuchote : Ji Le 20 mars, 2h27 via Résumé : Andromaque

fff gribouille : Ji Le 20 mars, 2h27 via Résumé : Andromaque

fff proclame : Hi Le 20 mars, 2h27 via Résumé : Andromaque

REnnes s'exclame : Blowjob Le 20 mars, 2h17 via Résumé : Andromaque

Aziz griffonne : Test Le 19 mars, 20h37 via Résumé : Le Tartuffe de Mol...

phbu^po murmure : Iupiojùi^p`k$o^àmce Le 18 mars, 10h42 via Résumé scène par scène - Le...

phbu^po murmure : Tuioippi^$ Le 18 mars, 10h42 via Résumé scène par scène - Le...

glires ger tergiverse : III+IV=VII Le 17 mars, 0h31 via Résumé : L'Avare

mini-tchat lol 14 bafouille : Kikou merci beaucoup pour les résumés ca m'as beaucoup aidé Le 16 mars, 20h40 via Résumé : L'Avare

anonyme dit : Dans l'acte 2 scène 5"Il discute, mais finalement, pas de réponse."ils prend un s et discute s'écrit avec ent a la fin " discutent" Le 16 mars, 19h15 via Résumé : On ne badine pas a...

anonyme s'exclame : Dans l'acte 3 scène 2" Maître Blazius essai d'intercepter une lettre de Camille, mais Perdican arrive, il lui prend la LETRE, la lit et en est tout attristé." letre prend 2 t " Lettre" Le 16 mars, 19h04 via Résumé : On ne badine pas a...

la ereture proclame : Pk le livre Les brigands de saint-michel ni sont pas??? Le 16 mars, 7h25 via Recherche

12324 dit : Pourquoi sa finit comme sa ?? Le 15 mars, 21h19 via Résumé : Andromaque

12324 murmure : !!! Le 15 mars, 21h18 via Résumé : Andromaque

12324 bafouille : ... Le 15 mars, 21h18 via Résumé : Andromaque

12324 scribouille : ?? Le 15 mars, 21h18 via Résumé : Andromaque

12324 s'exclame : Ahhh Le 15 mars, 21h18 via Résumé : Andromaque

anonymus dit : 7 Le 15 mars, 20h51 via Résumé : La Guerre de Troie...

Hugo écrit : Conseillé au 4A8 CRMT Le 13 mars, 7h36 via Résumé : L'Avare

hj u s'exclame : Jytf§èct§rc Le 12 mars, 16h11 via Résumé : L'Avare

Publicité



©Bnbox (Infos) - Cahier de l'élèves - Atelier webmaster - Boîte à Nuts - Bar à Nougat - Plus ou moins valide XHTML 1.0, CSS 2, RSS 2.0
Flux RSS