La Bnbox !

Créateur de sourires...

Mon compte

S'inscrire

Recherche

Vous êtes ici : Accueil » Concours » Grandes écoles » PSI (type Centrale) - Exercice d'oral [Intégrale, Décomposition en éléments simples]

Concours



« Article précédent - Sommaire - Article suivant »

Grandes écoles : PSI (type Centrale) - Exercice d'oral [Intégrale, Décomposition en éléments simples]

Calculer l'intégrale suivante :
I = \int_0^{\frac{\pi}{2}} \sqrt{\tan(\theta)}\, \mathrm d \theta
Eléments de réponse

  • Commencez par vérifier que cette intégrale est bien intégrable.
  • Ensuite, faites un changement de variables.
  • Il ne reste plus qu'à décomposer en éléments simples... Et c'est là que ça se complique. Bon courage bn_wink

Réponse

  • Intégrabilité : Le seul problème est en \frac{\pi}{2}, donc posons \theta = \frac{\pi}{2} - \epsilon\epsilon tend vers 0.
    Alors \tan(\theta) = \frac{1}{\tan(\epsilon)}
    Donc en effectuant un DL (ordre 1) de \sqrt{\tan(\theta)}, on voit que cette fonction converge. Donc elle est intégrable sur \left[0,\frac{\pi}{2}\right[
  • Changement de variable avec u = \sqrt{\theta} donc \mathrm{d}u = \frac{1+u^4}{2u} \mathrm{d}\theta. On a alors :
    I = \int_0^{+ \infty} \frac{2u^2}{1+u^4} \mathrm{d}u
  • Et là deux solutions s'offrent à nous, soit on fait la décomposition en éléments simples avec pleins de calculs, soit on décompose en réles, ce qui allège un peu les calculs. Je détaille ci-dessous le début de la première méthode, puis rapidement la deuxième.
    • Cherchons les racines du dénominateur :
      1+u^4 = 0 \,\, \Longleftrightarrow \,\, u^4=-1=1 \, e^{i \pi} \,\, \Longleftrightarrow \,\, u=\sqrt[4]{1} \, e^{i \frac{\pi}{4}} = \sqrt[4]{1} \omega
      Donc (1+u^4) = (1+\omega)(1-\omega)(1+i \omega)(1-i \omega)
      Il ne reste plus qu'à trouver les quatre constantes de la décomposition en éléments simples.
    • On décompose en réel :
      1+u^4 = (u^2+1)^2 + (\sqrt{2}u)^2 = (u^2 - \sqrt{2}u +1)(u^2 + \sqrt{2}u +1)
      On doit donc trouver quatre constantes :
      \frac{2u^2}{(u^2 - \sqrt{2}u +1)(u^2 + \sqrt{2}u +1)} = \frac{Au+B}{(u^2 + \sqrt{2}u +1)} + \frac{Cu+D}{(u^2 - \sqrt{2}u +1)}
      On peut remarquer que u \rightarrow 0 \,\, \Longrightarrow \,\, B=-D et \times u, \, u \rightarrow + \infty \,\, \Longrightarrow \,\, A=-C
      On remplace, on développe et on trouve : B=D=0 et C=-A=-\frac{\sqrt{2}}{2}
  • Reste à calculer I... On pose : X \,\, \rightarrow \,\, + \infty. On a : (1 \pm \sqrt{2}u+u^2)' = (2u \pm \sqrt{2}). On a alors :
    \int_0^{X} \frac{u}{1 \pm \sqrt{2}u+u^2} \mathrm{d}u = \frac{1}{2} \int_0^{X} \frac{(2u \pm \sqrt{2}) \mp \sqrt{2}}{1 \pm \sqrt{2}u+u^2} \mathrm{d}u = \frac{1}{2} \int_0^{X} \frac{2u \pm \sqrt{2}}{1 \pm \sqrt{2}u+u^2} \mathrm{d}u \, \mp \, \frac{\sqrt2}{2} \int_0^{X} \frac{\mathrm{d}u}{1 \pm \sqrt{2}u+u^2}
    Sachant que :
    \int_{}^{} \frac{u'}{u}\mathrm{d}u = \ln(u)
    \int_{}^{} \frac{\mathrm{d}u}{u^2+a^2} = \frac{1}{a} \arctan(\frac{u}{a})
    En terminant les calculs et en prenant les deux parties de l'intégrales, on obtient : I = \color{Red}\frac{\sqrt{2} \pi}{2}



Cet exercice peut s'avérer délicat à certains endroits, et ce qui est exposé ici est la démarche générale, sans entrer dans les détails. Si vous avez un problème à un endroit de la résolution, vous pouvez poser vos questions sur le Bar à Nougat.


Ailleurs sur la Bnbox

Ailleurs sur la Toile

Mini-tchat

?

Maricela déclare : What is size of wholesale jerseys may have? Know more about here - <a href="http://aeml.ca">wholesale mlb jerseys</a> Aujourd'hui, 2h43 via Cours XHTML/CSS

sasa chuchote : A très bien.. #grosvent Hier, 20h11 via Résumé du livre : Le Cid de...

sasa murmure : CC Hier, 20h07 via Résumé du livre : Le Cid de...

tutota écrit : Je veux plus petit que sa ... Le 20 février, 22h54 via Résumé : L'Avare

clem murmure : Cc Le 20 février, 16h10 via Résumé - Les Fourberies De ...

clara s'exclame : Lol Le 19 février, 19h08 via Résumé - Le Médecin Malgrè ...

26 écrit : Trop facile Le 18 février, 13h49 via Accueil

26 bafouille : 7 Le 18 février, 13h48 via Accueil

moi bafouille : Coucou Le 16 février, 17h13 via Résumé scène par scène - Le...

lol lol déclame : Psssssssssssssssssssss Le 16 février, 13h34 via Résumé : Le Mariage de Figa...

dhg654 bafouille : *larmes*
C'est trop romantique pour moi
Le 16 février, 12h41 via Boîte à Nuts

dhg654 proclame : C'est si beau...
Si seulement je pouvais moi aussi dire cela à quelqu'un...
Le 16 février, 12h40 via Boîte à Nuts

Hey scribouille : Oui!
C'est le plus beau jour de ma vie!
Le 16 février, 12h39 via Boîte à Nuts

Un amoureux un peu timide tergiverse : +Hey
Veux tu m'épouser?
Le 16 février, 12h38 via Boîte à Nuts

Hey tergiverse : Oh my god I think I love you!
Je t'aime, Un amoureux un peu timide!
Le 16 février, 12h38 via Boîte à Nuts

Un amoureux un peu timide murmure : I love you !!!! Le 16 février, 12h33

d écrit : D Le 16 février, 12h24 via Résumé scène par scène - Le...

d bafouille : D Le 16 février, 12h24 via Résumé scène par scène - Le...

Fiery Blaze proclame : Ca va les bns Le 16 février, 12h22 via Résumé scène par scène - Le...

Fiery Blaze tergiverse : Je rigole Le 16 février, 12h22 via Résumé scène par scène - Le...

Fiery Blaze griffonne : Nan Le 16 février, 12h22 via Résumé scène par scène - Le...

Fiery Blaze murmure : Ultra super mega hyper tres vraiment trop beaucoup pas bon Le 16 février, 12h22 via Résumé scène par scène - Le...

Fiery Blaze chuchote : Trop pourri Le 16 février, 12h21 via Résumé scène par scène - Le...

Fiery Blaze gribouille : Vraiment degeulasse Le 16 février, 12h21 via Résumé scène par scène - Le...

Fiery Blaze dit : Super mauvais Le 16 février, 12h21 via Résumé scène par scène - Le...

Fiery Blaze proclame : Horrible Le 16 février, 12h21 via Résumé scène par scène - Le...

Fiery Blaze écrit : Beurk pas bon Le 16 février, 12h21 via Résumé scène par scène - Le...

Fiery Blaze dit : En fait je trouve ca degoutant Le 16 février, 12h21 via Résumé scène par scène - Le...

Fiery Blaze griffonne : Totalement hyper super absolument vraiment beaucoup tres ultra mega tellement trop BON!!!!!!!!!!!!!!!!! Le 16 février, 12h20 via Résumé scène par scène - Le...

Fiery Blaze proclame : Trop bon. Le 16 février, 12h18 via Résumé scène par scène - Le...

Fiery Blaze s'exclame : Exquis! Le 16 février, 12h18 via Résumé scène par scène - Le...

Fiery Blaze déclare : C'est un regal Le 16 février, 12h18 via Résumé scène par scène - Le...

Fiery Blaze chuchote : Delicieux Le 16 février, 12h17 via Résumé scène par scène - Le...

Fiery Blaze s'exclame : Miam
;P
Le 16 février, 12h17 via Résumé scène par scène - Le...

Fiery Blaze tergiverse : J'aime les BNs Le 16 février, 12h17 via Résumé scène par scène - Le...

Fiery Blaze bafouille : Hey Le 16 février, 12h15 via Résumé scène par scène - Le...

reztyuio déclame : Bonjour Le 15 février, 11h37 via Résumé : Le Tartuffe de Mol...

said murmure : Mort au vache Le 12 février, 13h05 via Résumé : On ne badine pas a...

said chuchote : Skrt Le 12 février, 13h04 via Résumé : On ne badine pas a...

3+1+1+1+1=7 s'exclame : 1+1+1+1+1+1+1=7 Le 12 février, 12h48 via Résumé - Le Médecin Malgrè ...

77 déclame : 77 Le 12 février, 11h42 via Résumé : L'Avare

soso murmure : Tu fais quoi ? Le 10 février, 10h38 via Résumé : L'Avare

lila déclare : Hello ! sa va ? Le 10 février, 10h37 via Résumé : L'Avare

soso murmure : Hello ! Le 10 février, 10h37 via Résumé : L'Avare

lila gribouille : C hyper pratique Le 10 février, 10h37 via Résumé : L'Avare

sofia ttc déclame : Adore se site je le recommende Le 08 février, 17h22 via Résumé - Le Médecin Malgrè ...

Mohamed rah s'exclame : Shnou ka dirou Le 08 février, 16h41 via Romain Gary : La Promesse d...

Azerty tergiverse : As zeerttyu Le 08 février, 16h39 via Romain Gary : La Promesse d...

hy griffonne : Je trouve les résumés beaucoup trop courts mais merci beaucoup quand même ? Le 07 février, 19h02 via Résumé : Andromaque

hy bafouille : Bonjour?? Le 07 février, 19h00 via Résumé : Andromaque

Publicité



©Bnbox (Infos) - Cahier de l'élèves - Atelier webmaster - Boîte à Nuts - Bar à Nougat - Plus ou moins valide XHTML 1.0, CSS 2, RSS 2.0
Flux RSS