La Bnbox !

Créateur de sourires...

Mon compte

S'inscrire

Recherche

Vous êtes ici : Accueil » Cahier de l'élève » Mathématiques » ROC : Corolaire du théorème des valeurs intermédiaires

Cahier de l'élève



« Article précédent - Sommaire - Article suivant »

Mathématiques : ROC : Corolaire du théorème des valeurs intermédiaires

Théorème admis des Valeurs Intermédiaires


Abréviation : TVI
Ce théorème est nécessaire pour démontrer le corolaire du TVI, mais sa démonstration n'est pas exigible.


Soit f une fonction définie et continue sur I.
Soit a et b, deux réles de I.
Pour tout réel k compris entre f(a) et f(b), il existe un réel L compris entre a et b tel que f(c) \, = \, k

Exemple

Soit l'équation \cos(x)^2 \, = \, \frac{1}{3}
La fonction f(x) = \cos(x)^2 est définie et continue sur \mathbb{R}.  (car x \, \equiv \, \frac{\pi}{2} \, [\pi]) En particulier, elle est continue sur [0 , \pi]
Comme 0 \leq \frac{1}{3} \leq 1, d'après le théorème des valeurs intermédiaires, l'équation \cos(x)^2 = \frac{1}{3} admet au moins une solution c dans l'intervalle [0 , \pi]

Corolaire du théorème des Valeurs Intermédiaires


C'est ce corolaire qu'il faut savoir démontrer.


Si f est une fonction continue et strictement monotone (monotone : Soit croissante tout le temps, soit décroissante tout le temps.) sur un intervalle [a , b] alors pour tout réel k compris entre f(a) et f(b), l'équation f(x) = k admet une solution unique dans l'intervalle [a , b]
On dit que f réalise/effectue une bijection (ou encore : est une bijection) de l'intervalle [a , b] sur l'intervalle [f(a) , f(b)] ou  [f(b) , f(a)].

Démonstration à connaître

Existence d'une solution
L'existence d'une solution c dans [a , b] de l'équation f(x) = k est assurée par le théorème des valeurs intermédiaires puisque f est continue sur l'intervalle [a , b].

Unicité de la solution
Raisonnons par l'absurde.
Supposons qu'il existe une autre valeur de l'intervalle [a , b] appelé c' tel que : f(c') = k avec c \neq c'.
On a alors f(c) = f(c')
Puisque f est strictement monotone et c \neq c' on a :
  • soit f(c) < f(c')
  • soit f(c) > f(c')

Ce qui est absurde puisque f(c) = f(c').
Donc l'hypothèse de départ est fausse, donc c = c'. D'où l'unicité de la solution.

Conclusion
L'équation f(x) = k admet une seule et unique solution sur [a , b].


Retrouvez d'autres ROC sur la Bnbox mini_bn






         
                           

Ailleurs sur la Bnbox

Ailleurs sur la Toile

Mini-tchat

?

Maricela déclare : What is size of wholesale jerseys may have? Know more about here - <a href="http://aeml.ca">wholesale mlb jerseys</a> Aujourd'hui, 2h43 via Cours XHTML/CSS

sasa chuchote : A très bien.. #grosvent Hier, 20h11 via Résumé du livre : Le Cid de...

sasa murmure : CC Hier, 20h07 via Résumé du livre : Le Cid de...

tutota écrit : Je veux plus petit que sa ... Le 20 février, 22h54 via Résumé : L'Avare

clem murmure : Cc Le 20 février, 16h10 via Résumé - Les Fourberies De ...

clara s'exclame : Lol Le 19 février, 19h08 via Résumé - Le Médecin Malgrè ...

26 écrit : Trop facile Le 18 février, 13h49 via Accueil

26 bafouille : 7 Le 18 février, 13h48 via Accueil

moi bafouille : Coucou Le 16 février, 17h13 via Résumé scène par scène - Le...

lol lol déclame : Psssssssssssssssssssss Le 16 février, 13h34 via Résumé : Le Mariage de Figa...

dhg654 bafouille : *larmes*
C'est trop romantique pour moi
Le 16 février, 12h41 via Boîte à Nuts

dhg654 proclame : C'est si beau...
Si seulement je pouvais moi aussi dire cela à quelqu'un...
Le 16 février, 12h40 via Boîte à Nuts

Hey scribouille : Oui!
C'est le plus beau jour de ma vie!
Le 16 février, 12h39 via Boîte à Nuts

Un amoureux un peu timide tergiverse : +Hey
Veux tu m'épouser?
Le 16 février, 12h38 via Boîte à Nuts

Hey tergiverse : Oh my god I think I love you!
Je t'aime, Un amoureux un peu timide!
Le 16 février, 12h38 via Boîte à Nuts

Un amoureux un peu timide murmure : I love you !!!! Le 16 février, 12h33

d écrit : D Le 16 février, 12h24 via Résumé scène par scène - Le...

d bafouille : D Le 16 février, 12h24 via Résumé scène par scène - Le...

Fiery Blaze proclame : Ca va les bns Le 16 février, 12h22 via Résumé scène par scène - Le...

Fiery Blaze tergiverse : Je rigole Le 16 février, 12h22 via Résumé scène par scène - Le...

Fiery Blaze griffonne : Nan Le 16 février, 12h22 via Résumé scène par scène - Le...

Fiery Blaze murmure : Ultra super mega hyper tres vraiment trop beaucoup pas bon Le 16 février, 12h22 via Résumé scène par scène - Le...

Fiery Blaze chuchote : Trop pourri Le 16 février, 12h21 via Résumé scène par scène - Le...

Fiery Blaze gribouille : Vraiment degeulasse Le 16 février, 12h21 via Résumé scène par scène - Le...

Fiery Blaze dit : Super mauvais Le 16 février, 12h21 via Résumé scène par scène - Le...

Fiery Blaze proclame : Horrible Le 16 février, 12h21 via Résumé scène par scène - Le...

Fiery Blaze écrit : Beurk pas bon Le 16 février, 12h21 via Résumé scène par scène - Le...

Fiery Blaze dit : En fait je trouve ca degoutant Le 16 février, 12h21 via Résumé scène par scène - Le...

Fiery Blaze griffonne : Totalement hyper super absolument vraiment beaucoup tres ultra mega tellement trop BON!!!!!!!!!!!!!!!!! Le 16 février, 12h20 via Résumé scène par scène - Le...

Fiery Blaze proclame : Trop bon. Le 16 février, 12h18 via Résumé scène par scène - Le...

Fiery Blaze s'exclame : Exquis! Le 16 février, 12h18 via Résumé scène par scène - Le...

Fiery Blaze déclare : C'est un regal Le 16 février, 12h18 via Résumé scène par scène - Le...

Fiery Blaze chuchote : Delicieux Le 16 février, 12h17 via Résumé scène par scène - Le...

Fiery Blaze s'exclame : Miam
;P
Le 16 février, 12h17 via Résumé scène par scène - Le...

Fiery Blaze tergiverse : J'aime les BNs Le 16 février, 12h17 via Résumé scène par scène - Le...

Fiery Blaze bafouille : Hey Le 16 février, 12h15 via Résumé scène par scène - Le...

reztyuio déclame : Bonjour Le 15 février, 11h37 via Résumé : Le Tartuffe de Mol...

said murmure : Mort au vache Le 12 février, 13h05 via Résumé : On ne badine pas a...

said chuchote : Skrt Le 12 février, 13h04 via Résumé : On ne badine pas a...

3+1+1+1+1=7 s'exclame : 1+1+1+1+1+1+1=7 Le 12 février, 12h48 via Résumé - Le Médecin Malgrè ...

77 déclame : 77 Le 12 février, 11h42 via Résumé : L'Avare

soso murmure : Tu fais quoi ? Le 10 février, 10h38 via Résumé : L'Avare

lila déclare : Hello ! sa va ? Le 10 février, 10h37 via Résumé : L'Avare

soso murmure : Hello ! Le 10 février, 10h37 via Résumé : L'Avare

lila gribouille : C hyper pratique Le 10 février, 10h37 via Résumé : L'Avare

sofia ttc déclame : Adore se site je le recommende Le 08 février, 17h22 via Résumé - Le Médecin Malgrè ...

Mohamed rah s'exclame : Shnou ka dirou Le 08 février, 16h41 via Romain Gary : La Promesse d...

Azerty tergiverse : As zeerttyu Le 08 février, 16h39 via Romain Gary : La Promesse d...

hy griffonne : Je trouve les résumés beaucoup trop courts mais merci beaucoup quand même ? Le 07 février, 19h02 via Résumé : Andromaque

hy bafouille : Bonjour?? Le 07 février, 19h00 via Résumé : Andromaque

Publicité



©Bnbox (Infos) - Cahier de l'élèves - Atelier webmaster - Boîte à Nuts - Bar à Nougat - Plus ou moins valide XHTML 1.0, CSS 2, RSS 2.0
Flux RSS