La Bnbox !

Créateur de sourires...

Mon compte

S'inscrire

Recherche

Vous êtes ici : Accueil » Cahier de l'élève » Mathématiques » Liste des articles

Cahier de l'élève

Besoin d'un cours, d'un résumé, ou d'enrichir votre savoir ? Voici plusieurs articles qui pourront certainement vous aider. Bonne lecture !
» Pour discuter ou questionner à ce sujet : Salle de travail (soutien scolaire)



Mathématiques : Formules de trigonométrie

Le but de cet article est de réunir la plupart des formules de trigonométrie dont on peut avoir l'utilité durant ses études. Le tout a été classé par niveau : collège, lycée, études supérieurs. Cela dit, fort heureusement pour moi, je ne suis pas prof, donc je ne connais pas les programmes par coeur, par conséquent, les niveaux sont un peu approximatifs, mais ça vous donne une petite idée quand même.
En espérant que tout ceci vous sera utile mini_bn

Collège


document/cahier/triangle_rectangle.jpg
Triangle ABC rectangle en B

\,\,\,cos \, = \, \frac{cote \,adjacent}{hypotenuse }\,\,\, \,\,\,sin \, = \, \frac{cote \,oppose}{hypotenuse }\,\,\, \,\,\,tan \, = \, \frac{ cote \, oppose}{cote \, adjacent }\,\,\,


On peut utiliser le mot : SOHCAHTOA comme moyen mémo te…
Lire en entier : Formules de trigonométrie

Mathématiques : ROC - Formule d'intégration par parties

Formule d'intégration par parties


Soit u et v deux fonctions continues et dérivables sur
Lire en entier : ROC - Formule d'intégration par parties

Mathématiques : Liste de primitives classiques

Cet article a pour but de recenser la plupart des primitives classiques à connaitre (études supérieurs) pour trouver des primitives plus complexes.
Bon courage mini_bn

Liste des primitives


Je n'ai pas précisé les bornes partout parce que c'est un peu évident.

Lire en entier : Liste de primitives classiques

Mathématiques : Infinité de l'ensemble des nombres premiers

Théorème


L'ensemble des nombres premiers est infini.

Lemme utile à la démonstration


Tout entier naturel n non premier mais différent de 1 admet au moins un diviseur premier.

Démonstration à connaitre


Raisonnons par l'absurde.
Supposons qu'il existe un nombre fini d'entiers premiers. Notons \mathcal{P} cet ensemble fini.
Alors il existe p tel que : \forall n \in \mathcal{P} \,\, n<p. C'est-à-dire que p est le plus grand entier premier. 2, 3, 5, 7, ..., p.

Le symbôle \forall signifie "Quelque soit", "Pour tout".
Le symbôle \in signifie "appartient".
Ce sont des symbôles Mathématique compréhensible par les matheux des quatre coins de la planète !!


Notons N \, = \, 2 \times 3 \times 5 \times 7 \times ... \times p
Et notons alors
Lire en entier : Infinité de l'ensemble des nombres premiers

Mathématiques : Le raisonnement par analyse-synthèse

Introduction


Dans la série des "grosses méthodes de raisonnement" en mathématiques, je voudrais le petit frère...
Et oui, vous avez deviné, on va recommencer à raisonner ici, mais d'une manière encore différente.
Récapitulons... en Mathématiques, on distingue plusieurs types de raisonnement : le raisonnement direct, le raisonnement par récurrence, le raisonnement par l'absurde, et enfin le raisonnement par analyse-synthèse.

Il est un peu moins utilisé que ses grands frères, mais peut s'avérer très utile pour certaines démonstrations.

Mais alors qu'est-ce que tu attends ? Explique-nous !


Oui, oui, j'y viens j'y viens.

Principe



Je vais d'abord vous donner le principe global de la chose, puis j'expliquerai en détail avec un exemple imagé, et ensuite avec des vrais exemples mathématiques.

Supposons qu'on vous demande de démontrer quelque chose qui vous semble très compliqué au premier abord. Tellement que vous…
Lire en entier : Le raisonnement par analyse-synthèse

Mathématiques : Bases de la logique

Introduction




La logique est quelque chose d'important, non-seulement en mathématiques, mais aussi dans la vie de tous les jours. En effet, c'est mieux d'avoir un esprit bien structuré bn_tongue.

Vous m'objecterez que la logique, c'est quelque chose d'intuitif : on dit de quelqu'un qu'il est "logique", ou l'inverse, au vu de ses actions, de ses attitudes, etc...
En effet, la logique est quelque chose d'intuitif, de très intuitif.
Mais depuis longtemps, certains ont pensé codifier cette "logique".

Je sais que cela va vous paraître bizarre, mais en lisant la suite du cours, tout va s'éclairer (j'espère, sinon je n'aurai servi à rien bn_tongue).

A propos de la logique en mathématiques maintenant, on peut dire qu'elle est la base de beaucoup de choses, et notamment des méthodes de raisonnement. Ce lien entre la logique et les méthodes de raisonnement sera explicité un peu plus loin, mais sachez simplement que si personne n'avait codifié la "logique" intuitive, que nous poss…
Lire en entier : Bases de la logique

Mathématiques : Le raisonnement par l'absurde

Introduction et principe



Parlons maintenant un peu du raisonnement par l'absurde, belle méthode de raisonnement s'il en est !

C'est quoi encore ça ? Non mais pas question que j'apprenne quelque chose d'absurde !


Bon avant de commencer, une précision :  le raisonnement par l'absurde n'est pas absurde comme son nom l'indique. Il est même tout ce qu'il y a de plus logique.
Pour l'expliquer en des mots simples :
Vous savez que quelque chose est vrai. Mais vous ne savez pas trop comment le démontrer...
Eh bien ce n'est pas si compliqué que cela peut le paraître. Prenez ce quelque chose, et, même si vous savez qu'il est vrai, supposez qu'il est faux !

On sait que c'est vrai... Et tu nous dit de supposer que c'est faux... Où ça nous mène tout ça ?


J'y viens, j'y viens. En partant de la supposition que votre quelque chose est faux, et en développant un petit peu (ou beaucoup), au bout d'un moment,
Lire en entier : Le raisonnement par l'absurde

Mathématiques : Raisonnement par récurrence

Le raisonnement par récurrence est un raisonnement très puissant souvent utilisé en mathématiques. Il permet en général de démontrer des propriétés qui dépendent d'entiers, naturels ou relatifs (qui commencent par : quelque soit n entier naturel...).

On pourra distinguer plusieurs types de raisonnements par récurrence :
  • Le raisonnement simple. On l'étudie en général à partir du lycée et si vous en êtes à cette étape la de votre scolarité, peut-être ne vous paraît-il pas si "simple" bn_tongue Pourtant vous verrez que ce n'est pas très compliqué ! Si, si, c'est vrai !!
  • Le raisonnement multiple. Âme sensible s'abstenir ^-^ Enfin, cela dit, personne n'en est encore mort !

Je vais commencer par expliquer de manière très simple le raisonnement par récurrence dans ce cours, puis je ferai un tour plus approfondi des raisonnements par récurrence simple et multiple pour satisfaire les plus curieux mini_bn.

Vous vous apercevrez très vite que le principe est simple, mai…
Lire en entier : Raisonnement par récurrence

Mathématiques : Equations différentielles [partie 1]

Ah... Les équations différentielles... Un mot qui fait peur...
Quand on arrive en Terminale, et que les profs commencent à en parler, qu'on a des sueurs froides qui commencent à couler dans le dos...
Enfin, vous vous êtes peut-être déjà rendus compte que ce n'était pas si compliqué que ça...
Et même si vous trouvez toujours ça hors de portée, je vais essayer ici de rendre la chose accessible.


Il faut savoir tout d'abord que les cas abordés ici sont avant tout théoriques, et qu'en général, résoudre une équation différentielle est plus facile.
Il faut aussi savoir que la résolution de ces équations demande un certain nombre de notions mathématiques prérequises.
Pas d'affolement... Normalement, si vous êtes en train d'étudier les équations différentielles... Eh bien vous savez tout ce qu'il faut savoir : comment dériver et trouver les primitives d'une fonction, et également tout ce qui concerne les fonctions "traditionnelles" (facile à dire bn_tongue), c'est-à-dire les fonctions trig…
Lire en entier : Equations différentielles [partie 1]

Mathématiques : Math : Nombres Complexes - PCSI

Vous pouvez télécharger ce cours en entier. (scan des pages du cours) Télécharger ce cours.

Corps \mathbb{C} des nombres complexes

1) Rappels : Opérations dans \mathbb{C}

Il arrive qu'une équation n'est pas de solutions dans un ensemble donné. (par exemple : x\,+\,3\,=\,5 n'a pas de solutions dans \mathbb{N} d'où la création de l'ensemble \mathbb{Z}. D'où l'existence d'un ensemble \mathbb{C})
a) On admet qu'il existe un ensemble de nombres appelés : nombres imaginaires noté \mathbb{C} tel que :
\forall z\in\mathbb{C} \,\, \exists ! (x;y) \in \mathbb{R}^2 \,\, z=x+iy
Partie réel : \mathcal{R}e_z=x
Partie imaginaire : \mathcal{I}m_z=x
Avec i^2=-1\,
b) \mathbb{C} est muni de 2 opérations (loin de composition interne) l'addition et la soustraction.
L'addition est commutati…
Lire en entier : Math : Nombres Complexes - PCSI

Ailleurs sur la Bnbox

Ailleurs sur la Toile

Mini-tchat

?

yo proclame : Yo yo Le 17 février, 20h54 via Résumé - Le Médecin Malgrè ...

eva scribouille : Qu el qu un a un resume sur le voyage de mr perrichon ? Le 11 février, 18h38 via Fiches sur les personnages ...

evalol déclare : 1a2z Le 11 février, 18h36 via Résumé - Les Fourberies De ...

sysy s'exclame : Quelqun a un resume des evenements importants ds bel ami? Le 11 février, 1h38 via Fiches sur les personnages ...

jojolerigolo tergiverse : Qui est a Léon Blum Le 10 février, 18h00 via Politique d'accessibilité

tom s'exclame : Bonjour Le 09 février, 13h39 via Résumé scène par scène - Le...

dams chuchote : Et dams lithopedion Le 02 février, 11h08 via Résumé scène par scène - Le...

dams écrit : Qui et votre rapeure prefere ou chanteure moi DAMSO DAMSO DAMSO DAMSO DAMSO c'est cqfd !! Le 02 février, 11h07 via Résumé scène par scène - Le...

dams dit : Bonjour Le 02 février, 11h05 via Résumé scène par scène - Le...

dams déclame : Elle et bien mais c'est notre prof de francais quoi qui nous demande de la faire Le 02 février, 11h05 via Résumé scène par scène - Le...

Laura.lly gribouille : BONJOUR Le 01 février, 21h00 via Résumé scène par scène - Le...

juliaaaaaa griffonne : HEYYYY!!Vous allez bien? Le 31 janvier, 18h47 via Résumé scène par scène - Le...

maelys griffonne : Le cid en soit n est pas si mal c'est juste qu il est compliqué a comprendre j ai un oral a faire devant toute ma classe et j ai a peux pres compris Le 31 janvier, 16h11 via Résumé scène par scène - Le...

leane écrit : Et le je travail sur le cid je comprend rien sa me soule Le 30 janvier, 14h51 via Résumé scène par scène - Le...

leane dit : Moi jai fait les fourberie de scapin lannee derniere quand jetais en 5eme Le 30 janvier, 14h51 via Résumé scène par scène - Le...

Charlienette déclare : Nan .. je hurle la Le 30 janvier, 9h58 via Résumé - Les Fourberies De ...

Charlienette chuchote : Je murmure pas ! Le 30 janvier, 9h58 via Résumé - Les Fourberies De ...

Charlienette murmure : JE l'ai demain Le 30 janvier, 9h58 via Résumé - Les Fourberies De ...

Charlienette griffonne : Vous avez déjà fait un cibtrole sur les fourberies de scapin acte 2 ? Le 30 janvier, 9h58 via Résumé - Les Fourberies De ...

Charlienette déclame : Coucou Le 30 janvier, 9h57 via Résumé - Les Fourberies De ...

lkjhgfds chuchote : Coucou Le 28 janvier, 20h43 via Résumé - Le Médecin Malgrè ...

kikoudu73 écrit : Octogone Le 28 janvier, 14h30 via Fiches sur les personnages ...

kikoudu73 tergiverse : Avec ta region perdue Le 28 janvier, 14h29 via Fiches sur les personnages ...

bobby dit : Mairci bocou se cour de francé ma biain édé.2 + javé pa lu le livreu Le 28 janvier, 13h12 via Fiches sur les personnages ...

hghyfrfde scribouille : Lkjugtrdf Le 27 janvier, 12h16 via Résumé - Les Fourberies De ...

youyou déclare : Champs requis Le 06 janvier, 20h33 via Français

Samantha déclare : C'est tres simple Le 06 janvier, 17h51 via Résumé scène par scène - Le...

Samantha dit : CC Le 06 janvier, 17h51 via Résumé scène par scène - Le...

bande de ouff déclare : Ou vous étè vivant Le 06 janvier, 16h38 via Résumé : Le Tartuffe de Mol...

bande de ouff chuchote : Yo bande de ouff Le 06 janvier, 16h35 via Résumé : Le Tartuffe de Mol...

LE BG griffonne : HELLO MA MAN Le 04 janvier, 7h18 via Résumé scène par scène - Le...

. gribouille : ; Le 02 janvier, 19h37 via Résumé : Le Mariage de Figa...

loo griffonne : Looo Le 02 janvier, 19h18 via Les avantages et les risque...

aaaaa murmure : Cacas Le 02 janvier, 13h25 via Les avantages et les risque...

lu proclame : Que tal? Le 01 janvier, 17h06 via Les avantages et les risque...

lu écrit : Hey Le 01 janvier, 17h06 via Les avantages et les risque...

ribou proclame : Coucou Le 30 décembre 2018, 11h52 via Fiches sur les personnages ...

aziz proclame : Toutoutoutou Le 28 décembre 2018, 15h30 via Comment fonctionne le mini-...

aziz chuchote : Waw made in china Le 28 décembre 2018, 15h29 via Comment fonctionne le mini-...

aziz murmure : Je suis hiybjgujh Le 28 décembre 2018, 15h29 via Résumé - La Chèvre De M. Se...

Moi s'exclame : Nb k Le 18 décembre 2018, 23h12 via Résumé scène par scène - Le...

yuiooyo tergiverse : Jouon ensemble Le 17 décembre 2018, 21h19 via Résumé scène par scène - Le...

Tom déclare : Ça va Le 17 décembre 2018, 10h25 via Résumé - Les Fourberies De ...

Carla proclame : Caca Le 17 décembre 2018, 10h22 via Résumé - Les Fourberies De ...

Moi écrit : Génial ? Le 17 décembre 2018, 10h21 via Résumé - Les Fourberies De ...

yi déclare : Ipmuo Le 16 décembre 2018, 17h45 via Résumé scène par scène - Le...

Moi chuchote : Bvvgvv Le 16 décembre 2018, 15h22 via Résumé scène par scène - Le...

Moi tergiverse : Bbcgd Le 16 décembre 2018, 15h22 via Résumé scène par scène - Le...

)à)ào$ bafouille : Jiojiij Le 16 décembre 2018, 13h22 via Résumé scène par scène - Le...

atuil dit : Zzeee Le 15 décembre 2018, 21h47 via Résumé scène par scène - Le...

Publicité



©Bnbox (Infos) - Cahier de l'élèves - Atelier webmaster - Boîte à Nuts - Bar à Nougat - Plus ou moins valide XHTML 1.0, CSS 2, RSS 2.0
Flux RSS