La Bnbox !

Créateur de sourires...

Mon compte

S'inscrire

Recherche

Vous êtes ici : Accueil » Cahier de l'élève » Mathématiques » Le raisonnement par analyse-synthèse

Cahier de l'élève



« Article précédent - Sommaire - Article suivant »

Mathématiques : Le raisonnement par analyse-synthèse

Introduction


Dans la série des "grosses méthodes de raisonnement" en mathématiques, je voudrais le petit frère...
Et oui, vous avez deviné, on va recommencer à raisonner ici, mais d'une manière encore différente.
Récapitulons... en Mathématiques, on distingue plusieurs types de raisonnement : le raisonnement direct, le raisonnement par récurrence, le raisonnement par l'absurde, et enfin le raisonnement par analyse-synthèse.

Il est un peu moins utilisé que ses grands frères, mais peut s'avérer très utile pour certaines démonstrations.

Mais alors qu'est-ce que tu attends ? Explique-nous !


Oui, oui, j'y viens j'y viens.

Principe



Je vais d'abord vous donner le principe global de la chose, puis j'expliquerai en détail avec un exemple imagé, et ensuite avec des vrais exemples mathématiques.

Supposons qu'on vous demande de démontrer quelque chose qui vous semble très compliqué au premier abord. Tellement que vous ne savez pas comment faire.
Le raisonnement par analyse-synthèse peut s'avérer une bonne solution. Il se déroule en 2 étapes :

L'Analyse : Supposez que ce que vous voulez démontrer est vrai, et cherchez des conditions nécessaires à satisfaire pour que cela puisse être vrai.

La Synthèse : Vérifiez si la chose qui vérifie ces conditions est bien solution du problème posé.

Bon, vu comme ça, c'est très abstrait bn_wink. Donc on va travailler sur des exemples assez simples : un exemple complètement hors du domaine des mathématiques, pour vous permettre de mieux appréhender le principe du raisonnement; et un autre exemple d'utilisation en mathématiques.

Exemples


Le BN géant

Un jour, on vous demande de prouver l'existence d'un BN au chocolat géant vivant !
A première vue, ça semble assez difficile à faire... Et vous n'avez aucune idée de la manière de procéder.
Alors procédons par Analyse-Synthèse !
  • Première partie, l'analyse : supposons qu'il existe un BN au chocolat géant vivant quelque part dans le monde.
    Si un BN de ce genre existe, il est évident qu'il vivra nécessairement loin de l'eau, parce qu'un BN dans l'eau devient tout mou et se dissous...
    Si ce type de BN existe, il se trouvera nécessairement loin des régions chaudes, sinon son chocolat fondrait et il disparaitrait bn_sad.
    Il sera aussi nécessairement loin des régions très froides, pour ne pas geler.

    Ces conditions nécessaires qu'on vient de trouver réduisent déjà notre champ de recherche. On sait que maintenant, le seul endroit où on peut trouver un BN de ce type, c'est en France.
    Mais la France c'est toujours assez grand. On va donc chercher d'autres conditions nécessaires encore plus restrictives.

    Un grand BN comme ça, ça a besoin de beaucoup de chocolat pour tenir ensemble... Ca doit donc vivre nécessairement près d'une chocolaterie, ou d'une biscuiterie.
    Et en plus, les BN sont créés à Nantes, donc forcément, le grand BN habite près de ses parents, donc près de Nantes.
    Ce qui nous amène directement à la conclusion que le BN géant habite dans la biscuiterie BN.

  • Deuxième partie, la synthèse : nous devons vérifier notre conclusion, c'est-à-dire que nous devons prendre le premier avion pour Nantes (ou le premier TGV bn_tongue), et nous rendre à la biscuiterie pour vérifier que le BN géant s'y trouve.
    Soit on le trouve, et on a bien prouvé qu'il existe.
    Soit on ne le trouve pas, et on a prouvé qu'il n'existe pas, puisqu'il n'est pas à l'endroit où il devait nécessairement être.


(Maintenant, eh bien je vous laisse aller vérifier par vous-même. bn_tongue)


Fonctions paires et impaires

Voici l'énoncé de l'exercice : Soit f une application définie sur \mathbb{R}. Montrer que f s'écrit d'une façon unique comme la somme d'une application paire et d'une application impaire (application est synonyme de fonction dans ce cas).

A première vue, et en essayant différentes méthodes, ce problème paraît difficile à résoudre. Il se peut même que vous n'y arriviez pas bn_tongue. Mais c'est normal.
Pour résoudre ce problème, il faut utiliser le raisonnement par analyse-synthèse.

Allez on est partis !

Première étape : L'Analyse

Soit f une fonction définie sur \mathbb{R}.
Supposons qu'il existe 2 fonctions, que l'on nommera p et i (p pour paire, et i pour impaire, un peu d'originalité bn_tongue), qui soient solution du problème, c'est-à-dire des fonctions telles que :

- p soit paire
- i soit impaire
- f soit la somme de ces deux fonctions, i.e. f \, = \, p \, + \, i

Traduisons ces 3 phrases : ces deux fonctions sont donc telles que :

 \forall x \in \mathbb{R} \, \left\{ \begin{array}{rcl} f(x) \, = \, p(x) \, + \, i(x) \\ p(-x) \, = \, p(x)\\ i(-x) \, = \, -i(x)\\ \end{array} \right.
Jusque là on n'a fait que traduire en rajoutant des x les 3 conditions vérifiées par i et p pour être solutions du problème.
Evidemment, pour l'instant, cela ne nous avance pas à grand chose.
Mais le principe de l'analyse-synthèse, comme pour l'exemple du BN géant, est d'affiner au maximum la recherche pour obtenir à la fin des conditions nécessaires suffisamment restrictives.

On va donc faire quelques petites manipulations sur les 3 "équations" obtenues.

Par exemple, cherchons f(-x). (Oui, j'avoue, il faut parfois faire preuve d'inventivité... Ca peut sembler tomber du ciel, mais au bout d'un moment, vous aurez pris l'habitude, et vous aurez un certain flair pour détecter ce qu'il faut faire.)

D'après les définitions des fonctions paires et impaires, on obtient :

 \forall x \in \mathbb{R} \, f(-x)  = \, p(-x) \, + \, i(-x)
   = \, p(x) \, - \, i(x) \,\,\, (1)


Or on sait qu'on a aussi :

 \forall x \in \mathbb{R} \, f(x)  = \, p(x) \, + \, i(x) \,\,\, (2)


On dispose donc des relations (1) et (2) ci-dessus.
Il faut maintenant en faire quelque chose. Et là, (oh miracle! bn_heureux) on remarque que si on fait la somme de ces deux relations, on aura disparition de la fonction i.
De même on voit que si on fait la différence des deux relations, ce sera la fonction p qui va disparaître.
La preuve :

 (1) \, + \, (2) \, \longrightarrow \forall x \in \mathbb{R} \,\, f(-x) \, + \, f(x) = \, p(x) \, + \, p(x) \, + \, i(x) \, - \, i(x)
= \, 2p(x)


D'où on en tire par simple division : \forall x \in \mathbb{R} \,\, p(x) \, = \, \frac{f(x) \, + \, f(-x)}{2}

D'autre part, on a :
 (1) \, - \, (2) \, \longrightarrow \forall x \in \mathbb{R} \,\, f(-x) \, - \, f(x) = \, p(x) \, - \, p(x) \, - \, i(x) \, - \, i(x)
= \, -2i(x)


D'où on en tire par une division et un petit changement de signe : \forall x \in \mathbb{R} \,\, i(x) \, = \, \frac{f(x) \, - \, f(-x)}{2}

Vous vous en doutez, après cela, on arrive bientôt à la fin de notre analyse... On a assez torturé les formules, et elles n'ont plus rien à nous dire.

Faisons donc une conclusion de l'analyse.
On sait que si f peut s'écrire comme une somme de deux fonctions, l'une paire et l'autre impaire, il est nécessaire que ces fonctions soient de la forme :
\forall x \in \mathbb{R} \,\, p(x) \, = \, \frac{f(x) \, + \, f(-x)}{2}
\forall x \in \mathbb{R} \,\, i(x) \, = \, \frac{f(x) \, - \, f(-x)}{2}
Ceci nous assure aussi que si ces fonctions existent, elles sont uniques (en effet, il n'y a qu'une seule fonction que l'on peut définir de telle manière).

On a bien avancé dans notre travail, et on a fait le plus dur.
Mais tout n'est pas terminé.


Deuxième étape : La Synthèse

Il reste à vérifier si les fonctions p et i trouvées sont bien solution du problème, c'est-à-dire que : p est paire, i est impaire, et f s'écrit comme la somme des deux.

Reprenons les fonctions p et i définies à la fin de notre analyse.
On a alors :
\forall x \in \mathbb{R} \,\, p(-x)  = \, \frac{f(-x) \, + \, f(-(-x))}{2}
   = \, \frac{f(-x) \, + \, f(x)}{2}
   = \, p(x)


D'où p est bien une fonction paire.

De plus:
\forall x \in \mathbb{R} \,\, i(-x)  = \, \frac{f(-x) \, - \, f(-(-x))}{2}
   = \, \frac{f(-x) \, - \, f(x)}{2}
   = \, -i(x)


D'où i est bien une fonction impaire.

Enfin, on a :
\forall x \in \mathbb{R} \,\, i(x) \, + \, p(x)  = \, \frac{f(x) \, - \, f(-x) \, + \, f(x) \, + \, f(-x)}{2}
   = \, \frac{2f(x)}{2}
   = \, f(x)


D'où on a bien  f \, = \, p \, + \, i .

Les 3 conditions de départ étant bien vérifiées par i et p, on en déduit que ces deux fonctions sont bien solution du problème posé. Donc que celui-ci admet bien une solution bn_tongue.

Donc : une fonction f étant donnée, il existe un unique couple de fonctions, l'une paire, l'autre impaire, telles que leur somme soit égale à f.

Et vous pouvez enfin mettre à la fin de votre copie le beau CQFD habituel. bn_wink

Conclusion



Je sais que vous pouvez trouver ça très étrange comme méthode de pensée. J'avoue que j'ai moi-même eu un peu de mal à m'y faire et à bien comprendre le principe.
Mais ne vous inquiétez pas. Comme d'habitude, la pratique amène une meilleure compréhension de la théorie. A force de faire ce type de raisonnements, vous finirez par bien le maîtriser bn_wink.






         
                           

Commentaires

#2552 Le 19/11/07 à 19h48» ABBASABBAS a dit :
DONNEZ_ moi , combien y'a t-il de demonstation en mathématiques
#2599 Le 20/11/07 à 10h57» Bnmaster a dit :
Beaucoup plus que tu ne peux l'imaginer bn_big_smile (mes condoléances)
#2829 Le 19/01/08 à 16h44» DarKnight a dit :
Combien de méthodes rigoureuses de raisonnement, je sais pas moi... je dirai 4-5 bien différentes.
Après, le nombre de choses démontrées et à démontrer est énorme, et bien souvent chaque démonstration a son propre petit "truc" qui fait qu'elle marche.
#2839 Le 20/01/08 à 21h43» saritasarita a dit :
Tu me donnes des belles solutions pour bien résonée je te remerci boucoup
mini_bn bn_accord Elle me plait
#3165 Le 14/05/08 à 15h07» my sistermy sister a dit :
Bonjour serait -il possible de m'éxpliquer plus en détail et avec des mots faciles,les fonctions paires et impaires,en m'envoyant les éxplications via mon e mail qui devrait etre affiché.Merci d'avance car c'est important pour moi de comprendre cela.
#3176 Le 14/05/08 à 23h30» DarKnight a dit :
Plus précisément, qu'est-ce que tu ne comprends pas. Est-ce que c'est a propos du raisonnement en lui-même, ou plutôt sur les calculs menés, ou encore sur les fonctions en elles-même ?
#4524 Le 2/01/11 à 19h26» clemus a dit :
Merci, c'est très clair:)
#4711 Le 6/09/11 à 19h17» arnogogo a dit :
Merci beaucoup, vous m'avez plus qu'éclairé!
#4908 Le 14/04/12 à 00h33» X@v a dit :
Merci pour ce superbe exemple de démonstration par analyse synthèse qui m'a fait rire tout seul devant mon écran bn_yikes)

Vive les BN (le le FCNA !)
Tchou Tchou
#5062 Le 5/11/12 à 13h39» plouf a dit :
Une question la voici:

je suis un eleve de 5 eme et tu ne pourrai pas simplifier puisque je dois faire une synthese des questions que j ai repondu et en faire une conclusion c est ca que je cherchai UN GRAND MERCI mais je ne comprend rien a tes exemples paire et impaire pourrais tu simplifier svp je dois finir ca avant les vacances MERCI DE TON TOPIC

l'eleve de 5 eme
#5063 Le 5/11/12 à 13h40» plouf a dit :
A oui j ai oublie tu ne peux pas simplifier tes exemples
#5214 Le 16/03/13 à 16h39» prépa a dit :
Franchement super explication, notre prof l'a utilisé sans l'introduire, et j'avoue qu'avec les BN tout s'éclaire bn_wink Merci !!
#5405 Le 23/09/13 à 14h20» azerty a dit :
Je suis un élève en première année mpsi et je voudrais d'autre exemple

Ajouter un commentaire



3+4 = ?


  BNcode  |   Module de Math

Ailleurs sur la Bnbox

Ailleurs sur la Toile

Mini-tchat

?

cheie chuchote : Aider moi comment faire un journaal de lecture ? Hier, 19h31 via Résumé : Le Tartuffe de Mol...

shaiii la best écrit : Wshhh Hier, 17h09 via Les avantages et les risque...

ugjujh s'exclame : Saluuuuut Hier, 17h09 via Les avantages et les risque...

ugjujh déclare : Tyvhbyju Hier, 17h09 via Les avantages et les risque...

joyce scribouille : Ce roman tres passionant Hier, 8h58 via Résumé scène par scène - Le...

joyce chuchote : Quel operation facile Hier, 8h53 via Résumé scène par scène - Le...

ok proclame : Qui aurais une carte mentale sur Mr Forestier de Bel-Ami svp? Le 09 décembre, 14h11 via Fiches sur les personnages ...

ok griffonne : Salut Le 09 décembre, 14h10 via Fiches sur les personnages ...

mamou murmure : Mamou 278 Le 08 décembre, 11h48 via Fiches sur les personnages ...

Dranreb dit : Merci pour le résumé des Fourberie de Scapin ! Mais pourriez-vous faire relire le texte par un élève de CM2 pour qu'il corrige la douzaine de GROSSES fôtteu qu'il contient ? Ça serait bien ! Le 05 décembre, 14h15 via Accueil

la perle des ocens chuchote : Hum Le 04 décembre, 18h03 via Fiches sur les personnages ...

bruh s'exclame : On 3+4 pas nous ?! Le 04 décembre, 8h19 via Résumé - Le Médecin Malgrè ...

1% déclare : C'est moi à 99% Le 03 décembre, 12h48 via Résumé : Le Tartuffe de Mol...

la mouche proclame : Je suis un bourdon Le 03 décembre, 11h52 via Résumé : Le Tartuffe de Mol...

meuh bafouille : 85+
3---9339=12
Le 30 novembre, 17h53 via Résumé scène par scène - Le...

1234 scribouille : D Le 26 novembre, 12h17 via Fiches sur les personnages ...

Akuu s'exclame : Yo Le 24 novembre, 16h09 via Résumé : Andromaque

oui chuchote : Voila Le 23 novembre, 19h15 via Résumé : Andromaque

arif tergiverse : Trop facile Le 22 novembre, 18h53 via Résumé - Le Médecin Malgrè ...

Tibo proclame : Damn les gens Le 19 novembre, 13h53 via Résumé - Le Médecin Malgrè ...

BERENICE bafouille : SALUUUUT Le 16 novembre, 20h55 via Accueil

kenfirstar s'exclame : Salut Le 16 novembre, 17h02 via Accueil

kenfirstar murmure : JE SUIS NOUVEAU ALOR SALUT SAVA Le 16 novembre, 16h19

kkljlk chuchote : Yoloooooooooooo Le 15 novembre, 20h15 via Fiches sur les personnages ...

crousthibax gribouille : Findus Le 14 novembre, 16h59 via Résumé : Andromaque

lol1256 murmure : Toi meme Le 11 novembre, 18h33 via Accueil

Douae doudi s'exclame : Lettres de mon moulin.le secret de maître corneille résumé Le 11 novembre, 12h22 via Résumé - Le Secret de Maîtr...

lol1234 dit : Je pense que j'ai raison Le 09 novembre, 21h04 via Fiches sur les personnages ...

... bafouille : J'ecris quoi au juste Le 08 novembre, 20h23 via Résumé - Les Fourberies De ...

vine écrit : Uh i never went to oovoo javer Le 08 novembre, 17h40 via Résumé scène par scène - Le...

rodrigue scribouille : Get out my poem Le 08 novembre, 17h17 via Résumé scène par scène - Le...

whats up écrit : H3y Le 08 novembre, 17h16 via Résumé scène par scène - Le...

Real Madame chuchote : Hey ladies Le 08 novembre, 17h15 via Résumé scène par scène - Le...

fake madame bafouille : Stregganona Le 08 novembre, 17h15 via Résumé scène par scène - Le...

jjj griffonne : Yo this class whack Le 08 novembre, 17h14 via Résumé scène par scène - Le...

jjj scribouille : SHvshvhscv Le 08 novembre, 17h14 via Résumé scène par scène - Le...

jjj bafouille : Mjjj

Le 08 novembre, 17h13 via Résumé scène par scène - Le...

hja tergiverse : Bonjour

je ne comprends pas la démonstration par récurrence de la suite de Fibonnacci de l'exemple 2
Le 07 novembre, 9h54 via Raisonnement par récurrence

Salut c qui ?? gribouille : 3+4 Le 04 novembre, 22h13 via Résumé - Le Médecin Malgrè ...

Gros zizi gribouille : Merci comme sa je vait lire le livre? Le 04 novembre, 21h52 via Résumé scène par scène - Le...

Theo écrit : Super Le 04 novembre, 10h21 via Résumé : On ne badine pas a...

momi proclame : Mdr Le 02 novembre, 19h29 via Résumé : L'Avare

kwj scribouille : Hjjj Le 30 octobre, 9h44 via Résumé scène par scène - Le...

GG tergiverse : Comment cv Le 28 octobre, 19h19 via Résumé : L'Avare

gh bafouille : Ugit Le 28 octobre, 18h08 via Résumé - Les Fourberies De ...

jule s'exclame : Cv? Le 26 octobre, 18h32

jule proclame : Hey Le 26 octobre, 18h31

popo déclare : Salam tout le monde
mini_bn <3
Le 26 octobre, 16h26 via Biographie et Bibliographie...

jujujujuju chuchote : Bonsuir
je me suis égaré sur ce site mdrr
Le 26 octobre, 14h31 via Résumé : La Promesse de l'a...

apprendre :) murmure : T chelou toi :D
bn_neutral
Le 25 octobre, 20h21

Publicité



©Bnbox (Infos) - Cahier de l'élèves - Atelier webmaster - Boîte à Nuts - Bar à Nougat - Plus ou moins valide XHTML 1.0, CSS 2, RSS 2.0
Flux RSS