La Bnbox !

Créateur de sourires...

Mon compte

S'inscrire

Recherche

Vous êtes ici : Accueil » Cahier de l'élève » Mathématiques » Le raisonnement par l'absurde

Cahier de l'élève



« Article précédent - Sommaire - Article suivant »

Mathématiques : Le raisonnement par l'absurde

Introduction et principe



Parlons maintenant un peu du raisonnement par l'absurde, belle méthode de raisonnement s'il en est !

C'est quoi encore ça ? Non mais pas question que j'apprenne quelque chose d'absurde !


Bon avant de commencer, une précision :  le raisonnement par l'absurde n'est pas absurde comme son nom l'indique. Il est même tout ce qu'il y a de plus logique.
Pour l'expliquer en des mots simples :
Vous savez que quelque chose est vrai. Mais vous ne savez pas trop comment le démontrer...
Eh bien ce n'est pas si compliqué que cela peut le paraître. Prenez ce quelque chose, et, même si vous savez qu'il est vrai, supposez qu'il est faux !

On sait que c'est vrai... Et tu nous dit de supposer que c'est faux... Où ça nous mène tout ça ?


J'y viens, j'y viens. En partant de la supposition que votre quelque chose est faux, et en développant un petit peu (ou beaucoup), au bout d'un moment, vous arriverez forcément à une contradiction, à quelque chose que vous savez être forcément faux.
Si vous obtenez une contradiction, cela veut dire que votre supposition de départ était fausse, et donc que votre quelque chose est vrai.
(Et oui, c'est logique, parce que si, en supposant que votre quelque chose était faux, vous n'aviez pas de contradiction et que vous arriviez à un résultat cohérent, cela voudrait dire... que votre quelque chose était bien faux.)

Si j'étais vous, je relirai plusieurs fois le paragraphe précédent, de manière à bien comprendre le principe du raisonnement. Même en essayant de faire le plus simple possible,j'ai bien peur que ce ne soit pas vraiment limpide à la première lecture bn_wink



Tout ça vous semble un peu embrouillé je pense. Mais avec quelques exemples et de la pratique, ça va venir.
D'ailleurs en parlant d'exemples, on va y passer tout de suite, mais avant ceux-ci, je vous rappelle comment raisonner par l'absurde, puisque c'est la formule consacrée bn_wink :


- Supposez que ce que vous voulez prouver est faux.
- Cherchez ce qui découle de votre supposition et développez vos calculs jusqu'à obtenir une absurdité.
- Concluez que votre supposition était fausse, et que ce que vous vouliez prouver est donc vrai.




Attention! Le raisonnement par l'absurde ne set que dans le cas où la phrase que vous devez prouver est soit vraie, soit fausse. Sinon, il faut procéder autrement bn_wink

Exemples



Le raisonnement par l'absurde sert à beaucoup de choses, dans plusieurs branches des mathématiques, comme vous allez le voir bn_wink.
J'ai essayé de rassembler plusieurs exemples assez simples, mais, comme vous allez le constater, le vocabulaire mathématique s'introduit partout, et il est possible que la compréhension de ce vocabulaire soit difficile. Pour tout comprendre, je vous conseille de relire plusieurs fois chaque exemple si besoin, voire même de recopier le raisonnement sur un bout de papier pour être sûrs de bien suivre (parce que comprendre des maths directement sur Internet, c'est impossible bn_wink).

Exemple 1 : Montrer qu'une fonction et sa réciproque ont le même sens de variation.


Petit rappel avant de commencer, sur ce qu'est une fonction réciproque.
Vous savez ce qu'est une fonction : c'est une machine qui prend des caillous dans une boîte, les transforme en bonbons, et les met dans une autre boîte.
Huh? Mais on a toujours travaillé avec des x, des y, etc...

Vous préférez les x et les y, eh bien soit... bn_big_smile
Donc une fonction prend des nombres x dans son ensemble de définition,  et les transforme en nombres y.

Une fonction réciproque, comme son nom l'indique, fait la même chose, mais à l'envers, c'est-à-dire qu'elle prend les y, et les retransforme en x (ou les bonbons en caillous). Vous connaissez certainement la touche \sin^{-1} de votre calculatrice? Eh bien, cette touche est en fait une fonction utilisée par la calculatrice pour donner, à partir de la valeur du sinus, la valeur de l'angle. C'est la fonction réciproque du sinus.

Attention! Toutes les fonctions n'ont pas de réciproques. Pour adettre une réciproque, une fonction doit vérifier plusieurs conditions que je ne développerait pas ici, puisque ça n'a que peu d'intérêt dans ce cours^^. Ah oui au fait, une fonction réciproque de la fonction f se note f^{-1}


Je vous ai fait un petit schéma avec des "patates" pour que vous compreniez bien la notion de fonction réciproque, et ensuite on pourra s'enfoncer dans le raisonnement proprement dit bn_wink.

http://la-bnbox.info/document/cahier/146_fonction.png


Comprenez bien ce schéma, et regardez-le souvent, puisque c'est lui qui vas servir à notre raisonnement.



-On veut montrer que f et sa fonction réciproque f^{-1}, ont le même sens de variation. On va se limiter ici à un exemple avec f strictement croissante sur l'intervalle I. La démonstration pour f strictement décroissante est exactement la même, ou presque bn_wink.

-On suppose donc f strictement croissante sur l'intervalle I.
-Prenons au hasard deux nombres dans l'intervalle J (qui contient toutes les images des éléments de I par la fonction f). Nommons les a et b, avec par exemple a<b.
-Posons x=f^{-1}(a) et x`=f^{-1}(b).

-Commençons enfin la partie "absurde". On veut prouver que f^{-1} est une fonction strictement croissante, c'est-à-dire, puisque a<b, x<x`.

(x et x' sont les images de a et b par la fonction f^{-1}, donc si a et b sont rangés dans un certain ordre et que la fonction est croissante, les images seront forcément rangées dans le même ordre)

Raisonnons par l'absurde en supposant que l'on a x \geq x`.

Dans ce cas, puisque la fonction f est strictement croissante sur l'intervalle I, on a f(x) \geq f(x`), soit encore a \geq b.
Et la contradiction apparaît tout de suite, puisqu'on avait supposé a<b.

On a donc forcément x \geq x`, soit f^{-1}(a) \geq f^{-1}(b).

Conclusion : f^{-1} est strictement croissante sur l'intervalle J. CQFD bn_wink




Exemple 2 : Montrer que \sqrt 2 est un nombre irrationnel.


Voilà l'énoncé que l'on peut vous donner tout de go, comme ça, au début d'un problème d'algèbre. Et il se peut que vous restiez longtemps bloqués puisque vu comme ça, le problème paraît insolvable (enfin moi je sais que je resterai facilement bloqué dessus si je ne savais pas comment faire mini_bn).

Comme vous vous en doutez, c'est là qu'intervient le raisonnement par l'absurde. Et c'est ce raisonnement qui vous débloquera et vous permettra de réussir la question et d'avoir votre bac, votre place dans votre école d'ingénieur, ou que sais-je encore bn_wink.



- Reprenons donc la première étape du raisonnement : supposons que ce que l'on veut montrer est faux, c'est-à-dire supposons que \sqrt2 est un nombre rationnel, ou encore \sqrt2 \in \mathbb{Q}.

- A partir de là, puisqu'une racine carrée est toujours positive, et que \sqrt2 est rationnel, on sait qu'on peut l'écrire sous la forme d'une fraction irréductible de deux entiers positifs (je vous renvoie à la définition de l'ensemble des rationnels si vous avez un doute là-dessus bn_wink).
On appellera ces entiers p et q par la suite. (On ne les connait pas, mais on sait qu'ils existent puisque \sqrt2 \in \mathbb{Q}.)

- On a donc \sqrt2 = \frac{p}{q}.
En mettant les deux membres de l'égalité au carré, on obtient : 2 = (\frac{p}{q})^{2}.
Si on effectue maintenant le produit en croix, on trouve : 2q^{2}=p^{2}.
Ceci nous prouve que p^{2} est un multiple de 2, donc que p^{2} est un nombre pair.
Pour l'instant, on n'a aucune contradiction mathématique, donc on continue bn_wink.

- La prochaine étape consiste en un raisonnement par l'absurde imbriqué dans le précédent.
En effet, si on avait le nombre p qui était impair, alors il existerait un nombre k, entier naturel (k \in \mathbb{N}), tel que : p=2k+1.
Ce qui nous donnerait : p^{2}=4k^{2}+4k+1. p^{2} serait donc un nombre impair, ce qui est contredit par ce que l'on a vu juste précédemment, qui disait que p^{2} était pair.
Si p ne peux pas être impair, alors c'est que p est forcément pair.

- Puisque p est pair, c'est qu'il existe un nombre entier naturel n tel que l'on ait p=2n.
Mais rappelez-vous, on avait l'égalité suivante : 2q^{2}=p^{2}.
Si on remplace p par 2n, on obtient : 2q^{2}=4n^{2}.
Soit encore : q^{2}=2n^{2}.
On en déduit que q^{2} est pair, et donc q aussi (en suivant le même petit raisonnement que précédemment pour p).

- p et q sont donc tous les deux pairs. Or ceci est en contradiction avec l'hypothèse faite au début : on peut écrire \sqrt2 sous la forme d'une fraction irréductible de deux entiers positifs.
p et q sont tous deux pairs, donc multiples de 2, donc  \frac{p}{q} n'est pas une fraction irréductible.


-L'hypothèse faite au début nous mène à une contradiction mathématique.
Ceci nous prouve que cette hypothèse est fausse.
Et donc celà nous prouve bien que \sqrt2 \not\in \mathbb{Q}, que \sqrt2 n'est pas un nombre rationnel.
CQFD bn_wink.




Je ne met ici que deux exemples, pour vous donner une petite idée de l'utilisation du raisonnement par l'absurde.
Sachez qu'il sert à démontrer beaucoup de théorêmes, notamment concernant les suites et les fonctions.
Si vous voulez d'autres exemples (plus compliqués), je reste à votre disposition sur le Bar à Nougat.
Au revoir et à bientôt dans le monde merveilleux des maths bn_wink.






         
                           

Commentaires

#893 Le 20/03/07 à 14h39» mama a dit :
Génial merci grace a toi g tout compris
#3411 Le 4/10/08 à 14h49» SaraSara a dit :
Super! c'est très bien expliqué! mais je n'arrive pas à savoir ce qu'il faudrait faire pour :   Démontrer par un raisonnement par l'absurde que Si y est un nombre rationnel alors /sqrt2(racine de 2 ) + y est un nombre irrationnel. Merciii de me répondree dans les plus bref délais j'ai pas envie de me craquer a mo interro lundi ..bn_hmm
#3412 Le 4/10/08 à 14h51» Sara a dit :
Je laiisse mon adresse mail : ouarti.s@orange.fr
#3413 Le 4/10/08 à 14h52» Sara a dit :
Merci d'avance bn_wink
#3414 Le 5/10/08 à 18h33» DarKnight a dit :
Le point de départ serait de supposer que racine 2+y est rationnel et d'arriver à une conclusion du type : donc y est irrationnel, donc c'est impossible. Mais je ne vois pas les étapes intermédiaires.
#4825 Le 17/01/12 à 01h13» juni-x juni-x a dit :
Je suis très ému je ne sais même pas quoi dire tellement je n'ai jamais assisté à une explication pareille. eh! mon Dieu si je pourrais avoir de telles explications pendant mes cours de maths je serais le génie de la planète terre .
mais comment faire? puis-je avoir une aide?
#5051 Le 16/10/12 à 16h00» jean marc a dit :
Merci beaucoup cela me sera utile lors des intero
#5052 Le 16/10/12 à 16h03» jean marc a dit :
Mai qui a cree se genre de chose la mem
#5075 Le 14/11/12 à 19h43» ammy a dit :
Génial! explication top! merci!
#5179 Le 6/03/13 à 12h16» hfrtcjgv a dit :
Merci beaucoup pour tes explications j'ai tout compris mini_bn

Ajouter un commentaire



3+4 = ?


  BNcode  |   Module de Math

Ailleurs sur la Bnbox

Ailleurs sur la Toile

Mini-tchat

?

Je fais caca gribouille : Tu fais pipi Hier, 22h18 via Résumé : Andromaque

hb hbh déclare : Hbbhlhbub Hier, 22h14 via Résumé : Andromaque

Mdrr gribouille : Salut numéro 37 Hier, 21h42 via Résumé : Andromaque

pute numéro 37 lol scribouille : Je suis libre ce soir... Hier, 20h06 via Résumé - Les Fourberies De ...

fff déclame : Hello Hier, 20h06 via Résumé - Les Fourberies De ...

Caca déclare : Salut ça va? Hier, 17h11 via Résumé - Les Fourberies De ...

Melody gribouille : Chinese jerseys cheap.Buy 72 Charles Leno Jersey from China 84 Gannon Sinclair
Jersey factory, free shipping and easy returns also
best service.
Le 16 octobre, 14h16

Benji dit : Le keneur ftg Le 16 octobre, 14h11 via La Fonction Mémoire

katy tergiverse : Lovveee Le 12 octobre, 22h09 via Résumé - Les Fourberies De ...

mllm dit : Je t'aime Le 11 octobre, 17h26 via Le raisonnement par l'absur...

mllm s'exclame : Mourir Le 11 octobre, 17h25 via Le raisonnement par l'absur...

le keneur tergiverse : Benji Le 11 octobre, 9h34 via La Fonction Mémoire

lilou écrit : Dit le resume mael Le 10 octobre, 16h27 via Résumé - Les Fourberies De ...

mael dit : Cc Le 10 octobre, 16h22 via Résumé - Les Fourberies De ...

énola proclame : Ca sert sa va Le 09 octobre, 15h44 via Résumé scène par scène - Le...

Bnmaster dit : Au fait, hubiC de OVH offre 25go de stockage gratuitement. Avec mon code parain, c'est 5go en plus pour vous et pour moi : TJHNOY
Enjoy :-)
Le 06 octobre, 21h17 via Accueil

Mimi92p murmure : J'avais un devoir c'était de résumer l'acte 1 jusqu'a la scène 3 et j'avias pas compris l'histoire mais maintenet si c'es superber merci beaucoup c: Le 27 septembre, 16h40 via Résumé scène par scène - Le...

DIOO dit : K
+
Le 25 septembre, 20h00 via Le raisonnement par l'absur...

DIOO déclame : MNK Le 25 septembre, 20h00 via Le raisonnement par l'absur...

lol bafouille : Hola Le 25 septembre, 0h51 via Mais qu'est ce qu'un ROC en...

frostmachine gribouille : Nul Le 20 septembre, 15h03 via Biographie de Guy de Maupas...

romaub murmure : Wsh Le 18 septembre, 1h55 via Résumé : Le Tartuffe de Mol...

reiko déclare : Bjr Le 11 août, 15h24 via Résumé : Le Tartuffe de Mol...

Lilo déclare : Hehe Le 29 juillet, 1h36 via La radio qui tue

Cc dit : Cc cv Le 23 juin, 11h52 via Accueil

liliswag s'exclame : Zzzzzzzzzzzzzzzz Le 20 juin, 19h13 via Résumé - Les Fourberies De ...

liliswag chuchote : Vous êtes gentils Le 20 juin, 19h11 via Résumé - Les Fourberies De ...

polo murmure : Hrllo Le 19 juin, 9h11 via Résumé - La Chèvre De M. Se...

yooss chuchote : Je passe mon oral de frrancais demain comment faire pour preparer mon entretien svp Le 13 juin, 15h44 via Le déïsme selon Voltaire

olivier de carglass scribouille : Dou tu prend mon nom ta cru ttu te leve tout les matin pour faire mon job ou quoi
!!!
Le 13 juin, 9h38 via Résumé du livre : Le Cid de...

Mr scribouille : Débilité Le 11 juin, 22h17 via Résumé scène par scène - Le...

bruh dit : Bonjour je suis olivier de carglass Le 11 juin, 10h39 via Résumé : Andromaque

lulu890 tergiverse : JE M EN CHOU DES MéRESil vont rien Le 10 juin, 19h50 via Résumé - Les Fourberies De ...

lulu890 scribouille : SALUT Le 10 juin, 19h49 via Résumé - Les Fourberies De ...

cc déclame : Cc Le 08 juin, 18h04 via Résumé - Les Fourberies De ...

Water chuchote : CAC les gens vous habiter ou ? ? Le 07 juin, 19h25

Bobi proclame : Qui peut m'aider à faire un devoir svp ? Le 07 juin, 19h16 via Résumé - Le Médecin Malgrè ...

cc dit : Cc Le 06 juin, 17h55 via Résumé scène par scène - Le...

L'homme différent des autres dit : Toi même Le 06 juin, 10h59 via Les avantages et les risque...

P'tit lu déclame : Coucou Le 05 juin, 14h07 via Fiches sur les personnages ...

cool tergiverse : Coucou Le 28 mai, 18h22 via Résumé : La Promesse de l'a...

bois griffonne : Ouké Le 26 mai, 20h08 via Résumé scène par scène - Le...

loganisa déclare : Iiiiiiibonju Le 22 mai, 3h25 via Résumé scène par scène - Le...

mae déclame : En quoi la fin de la pièce les fourberies de scapin correspond bien au gore de la comedie Le 20 mai, 19h19 via Littérature

rimi bafouille : Moliere Le 17 mai, 16h40 via Résumé - Les Fourberies De ...

lucy écrit : Salut ce texte est pour ma mère, elle doit m'aider pour mon devoir... Le 14 mai, 13h37 via Texte intégral - Le Médecin...

lol scribouille : Mdr Le 14 mai, 11h38 via Résumé scène par scène - Le...

lol dit : Mdr Le 14 mai, 11h37 via Résumé scène par scène - Le...

jules tergiverse : ANNIVERSAIRE toi jules Le 12 mai, 16h09 via Résumé - Les Fourberies De ...

jules gribouille : A qui tu parle Le 12 mai, 16h09 via Résumé - Les Fourberies De ...

Publicité



©Bnbox (Infos) - Cahier de l'élèves - Atelier webmaster - Boîte à Nuts - Bar à Nougat - Plus ou moins valide XHTML 1.0, CSS 2, RSS 2.0
Flux RSS