La Bnbox !

Créateur de sourires...

Mon compte

S'inscrire

Recherche

Vous êtes ici : Accueil » Cahier de l'élève » Physique-Chimie » Equation de la Chaleur

Cahier de l'élève



« Article précédent - Sommaire

Physique-Chimie : Equation de la Chaleur

Introduction



Nous allons voir dans cet article comment établir une "équation de la chaleur", ou "équation de diffusion". Evidemment, on ne se place pas dans le cas général, ce qui serait trop complexe. On va prendre des hypothèses simplificatrices.

Niveau : Bac +2 environ

Prérequis :
  • Cours sur le premier principe de la Thermodynamique
  • Cours sur la diffusion thermique, et au moins sur la loi de Fourier
  • Notions sur les bilans et les opérateurs en physique (divergence, gradient, laplacien)



Hypothèses de travail :
  • Le flux d'Energie thermique est unidimensionnel (on choisira de dire que l'énergie thermique se diffuse suivant l'axe Ox du repère cartésien usuel).
  • Le vecteur densité volumique de courant d'énergie thermique (ou vecteur densité de flux thermique) est invariant suivant 2 directions de l'espace (on choisira ici les directions y et z du repère cartésien usuel).

Etablissement de l'équation



Etablir l'équation de la chaleur est assez simple, finalement, puisqu'il s'agit tout simplement d'appliquer le premier principe de la Thermodynamique à un système choisi.

En général, on choisit un cylindre de section S, et de longueur dx, situé entre les abscisses x et x+dx.
Je vous propose de regarder le schéma suivant, et de vous y reporter au fur et à mesure du raisonnement.

http://la-bnbox.info/document/cahier/dessin_equachaleur.png


On considère donc ce cylindre, et on va faire un bilan de ce qui se passe au niveau énergétique pour ce cylindre entre t et t+dt.
Le premier principe de la thermodynamique affirme que pour ce cylindre :
dU \,=\, \delta W \, + \, \delta Q
où :
  • \delta W est le travail élémentaire des forces qui s'exercent sur le cylindre.
  • \delta Q est le transfert thermique élémentaire échangé par le cylindre avec l'extérieur.
  • dU est la variation d'énergie interne du cylindre entre t et t+dt.


Reste à évaluer chacun des termes.

Le travail


C'est le plus facile. Puisque le cylindre est au repos macroscopique, et que les forces de pression ne travaillent pas, le travail élémentaire \delta W est nul.

L'énergie interne


On est dans le cas d'une diffusion dans un matériau quelconque. On est donc en présence d'une phase condensée, que l'on suppose idéale. En notant C sa capacité thermique massique, \rho sa masse volumique, et V son volume, on sait qu'on a : dU \,=\, \rho VCdT.
(dT étant une variation de température.)

Ici la température dépend du temps et de l'espace donc on passe en notation de dérivées partielles. (Ici le problème est uniquement mathématique, pour éviter des problèmes d'homogénéité par la suite).
De plus V \,=\, Sdx.
Ce qui nous donne : dU \,=\, \rho SdxdtC \frac{\partial T}{\partial t}.

Le transfert thermique


En toute logique, le transfert thermique correspond à la différence entre l'énergie qui entre dans le cylindre et celle qui en sort.
Or on sait qu'on obtient la puissance thermique par le flux thermique.
On obtient donc le transfert thermique par la différence entre le flux thermique entrant et le flux thermique sortant.
Le flux thermique est nul à travers la surface latérale du cylindre par le produit scalaire qui le définit. (\iint \vec j \, . \, d \vec S)

Reste le flux à travers les faces circulaires.

Résumons tout ce qu'on vient de dire :

\delta Q \,=\,( \Phi_{e} \,-\, \Phi_{s} )\,dt

Reste à calculer les flux entrant et sortant. C'est là qu'il faut suivre sur le schéma.
On a : \Phi_{e} \,=\, \iint \vec j(x,t) \, . \, d \vec S
Et puisque le flux est uniforme sur une section du cylindre, et qu'on oriente d \vec S dans le même sens que \vec j(x,t), l'intégration donne : \Phi_{e} \,=\, j(x,t)S

On suit exactement le même raisonnement pour le flux sortant :
\Phi_{s} \,=\, \iint \vec j(x+dx,t) \, . \, d \vec S
Ce qui donne \Phi_{s} \,=\, j(x+dx,t)S.

On a donc :
\delta Q \,=\,S( j(x,t) \,-\, j(x+dx,t))\,dt
On passe alors en notation de dérivées partielles :

\delta Q \,=\,-S \frac{\partial j(x,t)}{\partial x}\,dxdt

Equation de la chaleur


Reste à réunir tous les bouts du bilan qu'on a fait :
-S \frac{\partial j(x,t)}{\partial x}\,dxdt \, = \, \rho SdxdtC \frac{\partial T}{\partial t}.

Soit :
- \frac{\partial j(x,t)}{\partial x} \, = \, \rho C \frac{\partial T}{\partial t}.

C'est ici qu'intervient la loi de Fourier :  \vec j \,=\, - \lambda \vec{grad} T, où \lambda est la conductivité thermique du matériau.
Dans le cas unidimensionnel où l'on se trouve, cette loi de Fourier projetée sur l'axe Ox s'écrit :  j(x,t)= -\lambda \frac{ \partial T}{\partial x}

Cela permet de faire disparaître j de l'équation précédente, et d'obtenir l'équation aux dérivées partielles suivante, appelée l'équation de la chaleur, ou équation de diffusion :

 \frac{\partial T}{\partial t} \, = \, \frac{\lambda}{\rho C} \frac{\partial^{2} T}{\partial x^{2}}




         
                           

Ailleurs sur la Bnbox

Ailleurs sur la Toile

Mini-tchat

?

sasa chuchote : A très bien.. #grosvent Hier, 20h11 via Résumé du livre : Le Cid de...

sasa murmure : CC Hier, 20h07 via Résumé du livre : Le Cid de...

tutota écrit : Je veux plus petit que sa ... Le 20 février, 22h54 via Résumé : L'Avare

clem murmure : Cc Le 20 février, 16h10 via Résumé - Les Fourberies De ...

clara s'exclame : Lol Le 19 février, 19h08 via Résumé - Le Médecin Malgrè ...

26 écrit : Trop facile Le 18 février, 13h49 via Accueil

26 bafouille : 7 Le 18 février, 13h48 via Accueil

moi bafouille : Coucou Le 16 février, 17h13 via Résumé scène par scène - Le...

lol lol déclame : Psssssssssssssssssssss Le 16 février, 13h34 via Résumé : Le Mariage de Figa...

dhg654 bafouille : *larmes*
C'est trop romantique pour moi
Le 16 février, 12h41 via Boîte à Nuts

dhg654 proclame : C'est si beau...
Si seulement je pouvais moi aussi dire cela à quelqu'un...
Le 16 février, 12h40 via Boîte à Nuts

Hey scribouille : Oui!
C'est le plus beau jour de ma vie!
Le 16 février, 12h39 via Boîte à Nuts

Un amoureux un peu timide tergiverse : +Hey
Veux tu m'épouser?
Le 16 février, 12h38 via Boîte à Nuts

Hey tergiverse : Oh my god I think I love you!
Je t'aime, Un amoureux un peu timide!
Le 16 février, 12h38 via Boîte à Nuts

Un amoureux un peu timide murmure : I love you !!!! Le 16 février, 12h33

d écrit : D Le 16 février, 12h24 via Résumé scène par scène - Le...

d bafouille : D Le 16 février, 12h24 via Résumé scène par scène - Le...

Fiery Blaze proclame : Ca va les bns Le 16 février, 12h22 via Résumé scène par scène - Le...

Fiery Blaze tergiverse : Je rigole Le 16 février, 12h22 via Résumé scène par scène - Le...

Fiery Blaze griffonne : Nan Le 16 février, 12h22 via Résumé scène par scène - Le...

Fiery Blaze murmure : Ultra super mega hyper tres vraiment trop beaucoup pas bon Le 16 février, 12h22 via Résumé scène par scène - Le...

Fiery Blaze chuchote : Trop pourri Le 16 février, 12h21 via Résumé scène par scène - Le...

Fiery Blaze gribouille : Vraiment degeulasse Le 16 février, 12h21 via Résumé scène par scène - Le...

Fiery Blaze dit : Super mauvais Le 16 février, 12h21 via Résumé scène par scène - Le...

Fiery Blaze proclame : Horrible Le 16 février, 12h21 via Résumé scène par scène - Le...

Fiery Blaze écrit : Beurk pas bon Le 16 février, 12h21 via Résumé scène par scène - Le...

Fiery Blaze dit : En fait je trouve ca degoutant Le 16 février, 12h21 via Résumé scène par scène - Le...

Fiery Blaze griffonne : Totalement hyper super absolument vraiment beaucoup tres ultra mega tellement trop BON!!!!!!!!!!!!!!!!! Le 16 février, 12h20 via Résumé scène par scène - Le...

Fiery Blaze proclame : Trop bon. Le 16 février, 12h18 via Résumé scène par scène - Le...

Fiery Blaze s'exclame : Exquis! Le 16 février, 12h18 via Résumé scène par scène - Le...

Fiery Blaze déclare : C'est un regal Le 16 février, 12h18 via Résumé scène par scène - Le...

Fiery Blaze chuchote : Delicieux Le 16 février, 12h17 via Résumé scène par scène - Le...

Fiery Blaze s'exclame : Miam
;P
Le 16 février, 12h17 via Résumé scène par scène - Le...

Fiery Blaze tergiverse : J'aime les BNs Le 16 février, 12h17 via Résumé scène par scène - Le...

Fiery Blaze bafouille : Hey Le 16 février, 12h15 via Résumé scène par scène - Le...

reztyuio déclame : Bonjour Le 15 février, 11h37 via Résumé : Le Tartuffe de Mol...

said murmure : Mort au vache Le 12 février, 13h05 via Résumé : On ne badine pas a...

said chuchote : Skrt Le 12 février, 13h04 via Résumé : On ne badine pas a...

3+1+1+1+1=7 s'exclame : 1+1+1+1+1+1+1=7 Le 12 février, 12h48 via Résumé - Le Médecin Malgrè ...

77 déclame : 77 Le 12 février, 11h42 via Résumé : L'Avare

soso murmure : Tu fais quoi ? Le 10 février, 10h38 via Résumé : L'Avare

lila déclare : Hello ! sa va ? Le 10 février, 10h37 via Résumé : L'Avare

soso murmure : Hello ! Le 10 février, 10h37 via Résumé : L'Avare

lila gribouille : C hyper pratique Le 10 février, 10h37 via Résumé : L'Avare

sofia ttc déclame : Adore se site je le recommende Le 08 février, 17h22 via Résumé - Le Médecin Malgrè ...

Mohamed rah s'exclame : Shnou ka dirou Le 08 février, 16h41 via Romain Gary : La Promesse d...

Azerty tergiverse : As zeerttyu Le 08 février, 16h39 via Romain Gary : La Promesse d...

hy griffonne : Je trouve les résumés beaucoup trop courts mais merci beaucoup quand même ? Le 07 février, 19h02 via Résumé : Andromaque

hy bafouille : Bonjour?? Le 07 février, 19h00 via Résumé : Andromaque

CROTTINETTE déclame : CACA Le 06 février, 15h19 via Résumé - Les Fourberies De ...

Publicité



©Bnbox (Infos) - Cahier de l'élèves - Atelier webmaster - Boîte à Nuts - Bar à Nougat - Plus ou moins valide XHTML 1.0, CSS 2, RSS 2.0
Flux RSS