La Bnbox !

Créateur de sourires...

Mon compte

S'inscrire

Recherche

Vous êtes ici : Accueil » Cahier de l'élève » Mathématiques » Le raisonnement par analyse-synthèse

Cahier de l'élève



« Article précédent - Sommaire - Article suivant »

Mathématiques : Le raisonnement par analyse-synthèse

Introduction


Dans la série des "grosses méthodes de raisonnement" en mathématiques, je voudrais le petit frère...
Et oui, vous avez deviné, on va recommencer à raisonner ici, mais d'une manière encore différente.
Récapitulons... en Mathématiques, on distingue plusieurs types de raisonnement : le raisonnement direct, le raisonnement par récurrence, le raisonnement par l'absurde, et enfin le raisonnement par analyse-synthèse.

Il est un peu moins utilisé que ses grands frères, mais peut s'avérer très utile pour certaines démonstrations.

Mais alors qu'est-ce que tu attends ? Explique-nous !


Oui, oui, j'y viens j'y viens.

Principe



Je vais d'abord vous donner le principe global de la chose, puis j'expliquerai en détail avec un exemple imagé, et ensuite avec des vrais exemples mathématiques.

Supposons qu'on vous demande de démontrer quelque chose qui vous semble très compliqué au premier abord. Tellement que vous ne savez pas comment faire.
Le raisonnement par analyse-synthèse peut s'avérer une bonne solution. Il se déroule en 2 étapes :

L'Analyse : Supposez que ce que vous voulez démontrer est vrai, et cherchez des conditions nécessaires à satisfaire pour que cela puisse être vrai.

La Synthèse : Vérifiez si la chose qui vérifie ces conditions est bien solution du problème posé.

Bon, vu comme ça, c'est très abstrait bn_wink. Donc on va travailler sur des exemples assez simples : un exemple complètement hors du domaine des mathématiques, pour vous permettre de mieux appréhender le principe du raisonnement; et un autre exemple d'utilisation en mathématiques.

Exemples


Le BN géant

Un jour, on vous demande de prouver l'existence d'un BN au chocolat géant vivant !
A première vue, ça semble assez difficile à faire... Et vous n'avez aucune idée de la manière de procéder.
Alors procédons par Analyse-Synthèse !
  • Première partie, l'analyse : supposons qu'il existe un BN au chocolat géant vivant quelque part dans le monde.
    Si un BN de ce genre existe, il est évident qu'il vivra nécessairement loin de l'eau, parce qu'un BN dans l'eau devient tout mou et se dissous...
    Si ce type de BN existe, il se trouvera nécessairement loin des régions chaudes, sinon son chocolat fondrait et il disparaitrait bn_sad.
    Il sera aussi nécessairement loin des régions très froides, pour ne pas geler.

    Ces conditions nécessaires qu'on vient de trouver réduisent déjà notre champ de recherche. On sait que maintenant, le seul endroit où on peut trouver un BN de ce type, c'est en France.
    Mais la France c'est toujours assez grand. On va donc chercher d'autres conditions nécessaires encore plus restrictives.

    Un grand BN comme ça, ça a besoin de beaucoup de chocolat pour tenir ensemble... Ca doit donc vivre nécessairement près d'une chocolaterie, ou d'une biscuiterie.
    Et en plus, les BN sont créés à Nantes, donc forcément, le grand BN habite près de ses parents, donc près de Nantes.
    Ce qui nous amène directement à la conclusion que le BN géant habite dans la biscuiterie BN.

  • Deuxième partie, la synthèse : nous devons vérifier notre conclusion, c'est-à-dire que nous devons prendre le premier avion pour Nantes (ou le premier TGV bn_tongue), et nous rendre à la biscuiterie pour vérifier que le BN géant s'y trouve.
    Soit on le trouve, et on a bien prouvé qu'il existe.
    Soit on ne le trouve pas, et on a prouvé qu'il n'existe pas, puisqu'il n'est pas à l'endroit où il devait nécessairement être.


(Maintenant, eh bien je vous laisse aller vérifier par vous-même. bn_tongue)


Fonctions paires et impaires

Voici l'énoncé de l'exercice : Soit f une application définie sur \mathbb{R}. Montrer que f s'écrit d'une façon unique comme la somme d'une application paire et d'une application impaire (application est synonyme de fonction dans ce cas).

A première vue, et en essayant différentes méthodes, ce problème paraît difficile à résoudre. Il se peut même que vous n'y arriviez pas bn_tongue. Mais c'est normal.
Pour résoudre ce problème, il faut utiliser le raisonnement par analyse-synthèse.

Allez on est partis !

Première étape : L'Analyse

Soit f une fonction définie sur \mathbb{R}.
Supposons qu'il existe 2 fonctions, que l'on nommera p et i (p pour paire, et i pour impaire, un peu d'originalité bn_tongue), qui soient solution du problème, c'est-à-dire des fonctions telles que :

- p soit paire
- i soit impaire
- f soit la somme de ces deux fonctions, i.e. f \, = \, p \, + \, i

Traduisons ces 3 phrases : ces deux fonctions sont donc telles que :

 \forall x \in \mathbb{R} \, \left\{ \begin{array}{rcl} f(x) \, = \, p(x) \, + \, i(x) \\ p(-x) \, = \, p(x)\\ i(-x) \, = \, -i(x)\\ \end{array} \right.
Jusque là on n'a fait que traduire en rajoutant des x les 3 conditions vérifiées par i et p pour être solutions du problème.
Evidemment, pour l'instant, cela ne nous avance pas à grand chose.
Mais le principe de l'analyse-synthèse, comme pour l'exemple du BN géant, est d'affiner au maximum la recherche pour obtenir à la fin des conditions nécessaires suffisamment restrictives.

On va donc faire quelques petites manipulations sur les 3 "équations" obtenues.

Par exemple, cherchons f(-x). (Oui, j'avoue, il faut parfois faire preuve d'inventivité... Ca peut sembler tomber du ciel, mais au bout d'un moment, vous aurez pris l'habitude, et vous aurez un certain flair pour détecter ce qu'il faut faire.)

D'après les définitions des fonctions paires et impaires, on obtient :

 \forall x \in \mathbb{R} \, f(-x)  = \, p(-x) \, + \, i(-x)
   = \, p(x) \, - \, i(x) \,\,\, (1)


Or on sait qu'on a aussi :

 \forall x \in \mathbb{R} \, f(x)  = \, p(x) \, + \, i(x) \,\,\, (2)


On dispose donc des relations (1) et (2) ci-dessus.
Il faut maintenant en faire quelque chose. Et là, (oh miracle! bn_heureux) on remarque que si on fait la somme de ces deux relations, on aura disparition de la fonction i.
De même on voit que si on fait la différence des deux relations, ce sera la fonction p qui va disparaître.
La preuve :

 (1) \, + \, (2) \, \longrightarrow \forall x \in \mathbb{R} \,\, f(-x) \, + \, f(x) = \, p(x) \, + \, p(x) \, + \, i(x) \, - \, i(x)
= \, 2p(x)


D'où on en tire par simple division : \forall x \in \mathbb{R} \,\, p(x) \, = \, \frac{f(x) \, + \, f(-x)}{2}

D'autre part, on a :
 (1) \, - \, (2) \, \longrightarrow \forall x \in \mathbb{R} \,\, f(-x) \, - \, f(x) = \, p(x) \, - \, p(x) \, - \, i(x) \, - \, i(x)
= \, -2i(x)


D'où on en tire par une division et un petit changement de signe : \forall x \in \mathbb{R} \,\, i(x) \, = \, \frac{f(x) \, - \, f(-x)}{2}

Vous vous en doutez, après cela, on arrive bientôt à la fin de notre analyse... On a assez torturé les formules, et elles n'ont plus rien à nous dire.

Faisons donc une conclusion de l'analyse.
On sait que si f peut s'écrire comme une somme de deux fonctions, l'une paire et l'autre impaire, il est nécessaire que ces fonctions soient de la forme :
\forall x \in \mathbb{R} \,\, p(x) \, = \, \frac{f(x) \, + \, f(-x)}{2}
\forall x \in \mathbb{R} \,\, i(x) \, = \, \frac{f(x) \, - \, f(-x)}{2}
Ceci nous assure aussi que si ces fonctions existent, elles sont uniques (en effet, il n'y a qu'une seule fonction que l'on peut définir de telle manière).

On a bien avancé dans notre travail, et on a fait le plus dur.
Mais tout n'est pas terminé.


Deuxième étape : La Synthèse

Il reste à vérifier si les fonctions p et i trouvées sont bien solution du problème, c'est-à-dire que : p est paire, i est impaire, et f s'écrit comme la somme des deux.

Reprenons les fonctions p et i définies à la fin de notre analyse.
On a alors :
\forall x \in \mathbb{R} \,\, p(-x)  = \, \frac{f(-x) \, + \, f(-(-x))}{2}
   = \, \frac{f(-x) \, + \, f(x)}{2}
   = \, p(x)


D'où p est bien une fonction paire.

De plus:
\forall x \in \mathbb{R} \,\, i(-x)  = \, \frac{f(-x) \, - \, f(-(-x))}{2}
   = \, \frac{f(-x) \, - \, f(x)}{2}
   = \, -i(x)


D'où i est bien une fonction impaire.

Enfin, on a :
\forall x \in \mathbb{R} \,\, i(x) \, + \, p(x)  = \, \frac{f(x) \, - \, f(-x) \, + \, f(x) \, + \, f(-x)}{2}
   = \, \frac{2f(x)}{2}
   = \, f(x)


D'où on a bien  f \, = \, p \, + \, i .

Les 3 conditions de départ étant bien vérifiées par i et p, on en déduit que ces deux fonctions sont bien solution du problème posé. Donc que celui-ci admet bien une solution bn_tongue.

Donc : une fonction f étant donnée, il existe un unique couple de fonctions, l'une paire, l'autre impaire, telles que leur somme soit égale à f.

Et vous pouvez enfin mettre à la fin de votre copie le beau CQFD habituel. bn_wink

Conclusion



Je sais que vous pouvez trouver ça très étrange comme méthode de pensée. J'avoue que j'ai moi-même eu un peu de mal à m'y faire et à bien comprendre le principe.
Mais ne vous inquiétez pas. Comme d'habitude, la pratique amène une meilleure compréhension de la théorie. A force de faire ce type de raisonnements, vous finirez par bien le maîtriser bn_wink.






         
                           

Ailleurs sur la Bnbox

Ailleurs sur la Toile

Mini-tchat

?

Pierre Corneille scribouille : Je m'appelle Pierre Corneille je suis mort le 2 décembre je meur avec la chimère Le 02 décembre, 13h49 via Résumé du livre : Le Cid de...

reptilause murmure : TG Le 02 décembre, 13h48 via Résumé du livre : Le Cid de...

reptilause scribouille : Salut bande
de BN
Le 02 décembre, 13h48 via Résumé du livre : Le Cid de...

reptilause tergiverse : Reptileuse Le 02 décembre, 13h47 via Résumé du livre : Le Cid de...

Xeno déclare : Ok on y gagne quoi Le 30 novembre, 16h38 via Texte intégral - L'Avare de...

bobo écrit : WTF le calcul !*
Des barres!
Le 28 novembre, 20h31 via Résumé : La Promesse de l'a...

bobo scribouille : Merci!
Ca va me servir!
Le 28 novembre, 20h30 via Résumé : La Promesse de l'a...

bobo s'exclame : Tchippppppppp Le 28 novembre, 20h30 via Résumé : La Promesse de l'a...

mimi déclame : Qui aime chica vampiro ou bien qui a deja vu chica vampiro Le 28 novembre, 12h24 via Résumé - Les Fourberies De ...

lol bafouille : Lol le calcul Le 27 novembre, 15h50 via Mémo de VHDL

jenpierrdecou écrit : Et les armes en diamant sur bo2 Le 26 novembre, 14h22 via Résumé : L'Avare

jenpierrdecou déclame : Ctrl+w et vous avez argent illimité sur gta Le 26 novembre, 14h21 via Résumé : L'Avare

jenpierrdecou bafouille : Lololollolol Le 26 novembre, 14h21 via Résumé : L'Avare

jen déclare : Oké Le 26 novembre, 14h20 via Résumé : L'Avare

123 gribouille : Slttttttt Le 26 novembre, 13h23 via Résumé : Le Mariage de Figa...

Bnmaster chuchote : @lali Le voici Les Fourberies de Scapin Le 24 novembre, 10h13 via Résumé - Les Fourberies De ...

lali écrit : S il vous plait est ce que vous pouvez me donner le resume de fourberie de scapin merci d avance Le 23 novembre, 13h29 via Fiches sur les personnages ...

lali griffonne : Bibi est ce que c est l histoire du fourberie de scapin? Le 23 novembre, 13h28 via Fiches sur les personnages ...

bibi dit : Yo bb Le 23 novembre, 11h40 via Fiches sur les personnages ...

Bnmaster proclame : @eddiegreatbanks Nope, désolé.N'hésite pas à me l'envoyer un si tu en écris un. Le 22 novembre, 9h50 via Accueil

Zefir scribouille : Coucou Celia Faure, je viens de terminer le tom 7 de Autre monde de Maxime Chattam. J'ai énormément apprécié ce livre et je te le conseille vivement, même si je ne connais pas tes goûts. Si tu veux d'autres conseils plus en détail, on peux me contacter par skype: zefir-0011, mail: Adresse emailm.
Très bonne journée à tous !
Le 20 novembre, 16h28

bakalaye écrit : Oee les gens Le 17 novembre, 22h01 via Résumé : Le Tartuffe de Mol...

cheick écrit : Tout seul Le 17 novembre, 20h25 via Résumé : La Promesse de l'a...

cheick murmure : Personne Le 17 novembre, 20h25 via Résumé : La Promesse de l'a...

cheick écrit : Vous Etes d acore Le 17 novembre, 20h25 via Résumé : La Promesse de l'a...

cheick proclame : Aillllll Le 17 novembre, 20h24 via Résumé : La Promesse de l'a...

cheick proclame : Pogba ballon d or Le 17 novembre, 20h23 via Résumé : La Promesse de l'a...

cheick s'exclame : Je rigole Le 17 novembre, 20h23 via Résumé : La Promesse de l'a...

cheick dit : Aller voire Le 17 novembre, 20h22 via Résumé : La Promesse de l'a...

cheick chuchote : Hhh Le 17 novembre, 20h21 via Résumé : La Promesse de l'a...

Niainez gribouille : Weshhhh Le 17 novembre, 19h17 via Résumé : La Promesse de l'a...

sophie écrit : C'est trop facile Le 17 novembre, 14h12 via Texte intégral - Le Médecin...

k proclame : K Le 13 novembre, 19h33 via Romain Gary : La Promesse d...

@eddiegreatbanks dit : Est ce que vous avez un resume de nantas de zola? Le 09 novembre, 17h21 via Recherche

Bnmaster scribouille : @celia faure Il va falloir nous dire ce que tu préfères comme style pour qu'on puisse te conseiller : fiction, fantasy, historique, ... ? Le 09 novembre, 8h54 via Centrale PC 1997 - Exercice...

tgttttg écrit : Vt Le 09 novembre, 0h17 via Accueil

tgttttg dit : Vfev Le 09 novembre, 0h17 via Accueil

lola dit : Bruuuuuuuuuh Le 08 novembre, 17h41 via Fiches sur les personnages ...

kk scribouille : Salam Le 08 novembre, 15h22 via Les avantages et les risque...

quentin déclame : Littérature : Résumé : La Promesse de l'aube Le 07 novembre, 21h36 via Résumé : La Promesse de l'a...

-yu scribouille : -èuè Le 07 novembre, 14h31 via Résumé - Le Médecin Malgrè ...

$ chuchote : 7 Le 07 novembre, 7h45 via Le raisonnement par l'absur...

Bnmaster scribouille : Ok Le 06 novembre, 21h20 via Résumé du livre : Le Cid de...

celia faure dit : Personne ne repond sa devient un peu beaucoup soulant Le 06 novembre, 9h34

celia faure griffonne : Salut auriez vous un livre bien a me conseiller pour lire ?
Merci d'avance !
PS : j'adore lire, voilà pourquoi je vous pose cette question
et aussi je n'ai plus aucun livre que je n'ai pas lu chez moi du coup voili voilou
et encore une fois merci d'avance d'avoir lu mon message
bisous a tous XXX
Le 06 novembre, 9h31

Fgcgbcgnbfg s'exclame : Salut Le 05 novembre, 18h48 via Résumé du livre : Le Cid de...

Le BG du 93 déclame : Salam les kheys, merci de le partage de le livre. nique ta mere la pute le prof qui nous dit de lire moliere sa mere. Ciao bye cimer Le 05 novembre, 14h01 via Biographie de Molière

Belle-Amie :') écrit : Coucou Le 03 novembre, 20h34 via Fiches sur les personnages ...

cecile.27* gribouille : Ftcdxdkrysryesryhsi(èrf-ylgtuèytçomdfvypccaaa Le 03 novembre, 19h09 via Français

cecile.27* écrit : Vous éte tous nul Le 03 novembre, 19h08 via Français

Publicité



©Bnbox (Infos) - Cahier de l'élèves - Atelier webmaster - Boîte à Nuts - Bar à Nougat - Plus ou moins valide XHTML 1.0, CSS 2, RSS 2.0
Flux RSS