La Bnbox !

Créateur de sourires...

Mon compte

S'inscrire

Recherche

Vous êtes ici : Accueil » Cahier de l'élève » Mathématiques » Le raisonnement par analyse-synthèse

Cahier de l'élève



« Article précédent - Sommaire - Article suivant »

Mathématiques : Le raisonnement par analyse-synthèse

Introduction


Dans la série des "grosses méthodes de raisonnement" en mathématiques, je voudrais le petit frère...
Et oui, vous avez deviné, on va recommencer à raisonner ici, mais d'une manière encore différente.
Récapitulons... en Mathématiques, on distingue plusieurs types de raisonnement : le raisonnement direct, le raisonnement par récurrence, le raisonnement par l'absurde, et enfin le raisonnement par analyse-synthèse.

Il est un peu moins utilisé que ses grands frères, mais peut s'avérer très utile pour certaines démonstrations.

Mais alors qu'est-ce que tu attends ? Explique-nous !


Oui, oui, j'y viens j'y viens.

Principe



Je vais d'abord vous donner le principe global de la chose, puis j'expliquerai en détail avec un exemple imagé, et ensuite avec des vrais exemples mathématiques.

Supposons qu'on vous demande de démontrer quelque chose qui vous semble très compliqué au premier abord. Tellement que vous ne savez pas comment faire.
Le raisonnement par analyse-synthèse peut s'avérer une bonne solution. Il se déroule en 2 étapes :

L'Analyse : Supposez que ce que vous voulez démontrer est vrai, et cherchez des conditions nécessaires à satisfaire pour que cela puisse être vrai.

La Synthèse : Vérifiez si la chose qui vérifie ces conditions est bien solution du problème posé.

Bon, vu comme ça, c'est très abstrait bn_wink. Donc on va travailler sur des exemples assez simples : un exemple complètement hors du domaine des mathématiques, pour vous permettre de mieux appréhender le principe du raisonnement; et un autre exemple d'utilisation en mathématiques.

Exemples


Le BN géant

Un jour, on vous demande de prouver l'existence d'un BN au chocolat géant vivant !
A première vue, ça semble assez difficile à faire... Et vous n'avez aucune idée de la manière de procéder.
Alors procédons par Analyse-Synthèse !
  • Première partie, l'analyse : supposons qu'il existe un BN au chocolat géant vivant quelque part dans le monde.
    Si un BN de ce genre existe, il est évident qu'il vivra nécessairement loin de l'eau, parce qu'un BN dans l'eau devient tout mou et se dissous...
    Si ce type de BN existe, il se trouvera nécessairement loin des régions chaudes, sinon son chocolat fondrait et il disparaitrait bn_sad.
    Il sera aussi nécessairement loin des régions très froides, pour ne pas geler.

    Ces conditions nécessaires qu'on vient de trouver réduisent déjà notre champ de recherche. On sait que maintenant, le seul endroit où on peut trouver un BN de ce type, c'est en France.
    Mais la France c'est toujours assez grand. On va donc chercher d'autres conditions nécessaires encore plus restrictives.

    Un grand BN comme ça, ça a besoin de beaucoup de chocolat pour tenir ensemble... Ca doit donc vivre nécessairement près d'une chocolaterie, ou d'une biscuiterie.
    Et en plus, les BN sont créés à Nantes, donc forcément, le grand BN habite près de ses parents, donc près de Nantes.
    Ce qui nous amène directement à la conclusion que le BN géant habite dans la biscuiterie BN.

  • Deuxième partie, la synthèse : nous devons vérifier notre conclusion, c'est-à-dire que nous devons prendre le premier avion pour Nantes (ou le premier TGV bn_tongue), et nous rendre à la biscuiterie pour vérifier que le BN géant s'y trouve.
    Soit on le trouve, et on a bien prouvé qu'il existe.
    Soit on ne le trouve pas, et on a prouvé qu'il n'existe pas, puisqu'il n'est pas à l'endroit où il devait nécessairement être.


(Maintenant, eh bien je vous laisse aller vérifier par vous-même. bn_tongue)


Fonctions paires et impaires

Voici l'énoncé de l'exercice : Soit f une application définie sur \mathbb{R}. Montrer que f s'écrit d'une façon unique comme la somme d'une application paire et d'une application impaire (application est synonyme de fonction dans ce cas).

A première vue, et en essayant différentes méthodes, ce problème paraît difficile à résoudre. Il se peut même que vous n'y arriviez pas bn_tongue. Mais c'est normal.
Pour résoudre ce problème, il faut utiliser le raisonnement par analyse-synthèse.

Allez on est partis !

Première étape : L'Analyse

Soit f une fonction définie sur \mathbb{R}.
Supposons qu'il existe 2 fonctions, que l'on nommera p et i (p pour paire, et i pour impaire, un peu d'originalité bn_tongue), qui soient solution du problème, c'est-à-dire des fonctions telles que :

- p soit paire
- i soit impaire
- f soit la somme de ces deux fonctions, i.e. f \, = \, p \, + \, i

Traduisons ces 3 phrases : ces deux fonctions sont donc telles que :

 \forall x \in \mathbb{R} \, \left\{ \begin{array}{rcl} f(x) \, = \, p(x) \, + \, i(x) \\ p(-x) \, = \, p(x)\\ i(-x) \, = \, -i(x)\\ \end{array} \right.
Jusque là on n'a fait que traduire en rajoutant des x les 3 conditions vérifiées par i et p pour être solutions du problème.
Evidemment, pour l'instant, cela ne nous avance pas à grand chose.
Mais le principe de l'analyse-synthèse, comme pour l'exemple du BN géant, est d'affiner au maximum la recherche pour obtenir à la fin des conditions nécessaires suffisamment restrictives.

On va donc faire quelques petites manipulations sur les 3 "équations" obtenues.

Par exemple, cherchons f(-x). (Oui, j'avoue, il faut parfois faire preuve d'inventivité... Ca peut sembler tomber du ciel, mais au bout d'un moment, vous aurez pris l'habitude, et vous aurez un certain flair pour détecter ce qu'il faut faire.)

D'après les définitions des fonctions paires et impaires, on obtient :

 \forall x \in \mathbb{R} \, f(-x)  = \, p(-x) \, + \, i(-x)
   = \, p(x) \, - \, i(x) \,\,\, (1)


Or on sait qu'on a aussi :

 \forall x \in \mathbb{R} \, f(x)  = \, p(x) \, + \, i(x) \,\,\, (2)


On dispose donc des relations (1) et (2) ci-dessus.
Il faut maintenant en faire quelque chose. Et là, (oh miracle! bn_heureux) on remarque que si on fait la somme de ces deux relations, on aura disparition de la fonction i.
De même on voit que si on fait la différence des deux relations, ce sera la fonction p qui va disparaître.
La preuve :

 (1) \, + \, (2) \, \longrightarrow \forall x \in \mathbb{R} \,\, f(-x) \, + \, f(x) = \, p(x) \, + \, p(x) \, + \, i(x) \, - \, i(x)
= \, 2p(x)


D'où on en tire par simple division : \forall x \in \mathbb{R} \,\, p(x) \, = \, \frac{f(x) \, + \, f(-x)}{2}

D'autre part, on a :
 (1) \, - \, (2) \, \longrightarrow \forall x \in \mathbb{R} \,\, f(-x) \, - \, f(x) = \, p(x) \, - \, p(x) \, - \, i(x) \, - \, i(x)
= \, -2i(x)


D'où on en tire par une division et un petit changement de signe : \forall x \in \mathbb{R} \,\, i(x) \, = \, \frac{f(x) \, - \, f(-x)}{2}

Vous vous en doutez, après cela, on arrive bientôt à la fin de notre analyse... On a assez torturé les formules, et elles n'ont plus rien à nous dire.

Faisons donc une conclusion de l'analyse.
On sait que si f peut s'écrire comme une somme de deux fonctions, l'une paire et l'autre impaire, il est nécessaire que ces fonctions soient de la forme :
\forall x \in \mathbb{R} \,\, p(x) \, = \, \frac{f(x) \, + \, f(-x)}{2}
\forall x \in \mathbb{R} \,\, i(x) \, = \, \frac{f(x) \, - \, f(-x)}{2}
Ceci nous assure aussi que si ces fonctions existent, elles sont uniques (en effet, il n'y a qu'une seule fonction que l'on peut définir de telle manière).

On a bien avancé dans notre travail, et on a fait le plus dur.
Mais tout n'est pas terminé.


Deuxième étape : La Synthèse

Il reste à vérifier si les fonctions p et i trouvées sont bien solution du problème, c'est-à-dire que : p est paire, i est impaire, et f s'écrit comme la somme des deux.

Reprenons les fonctions p et i définies à la fin de notre analyse.
On a alors :
\forall x \in \mathbb{R} \,\, p(-x)  = \, \frac{f(-x) \, + \, f(-(-x))}{2}
   = \, \frac{f(-x) \, + \, f(x)}{2}
   = \, p(x)


D'où p est bien une fonction paire.

De plus:
\forall x \in \mathbb{R} \,\, i(-x)  = \, \frac{f(-x) \, - \, f(-(-x))}{2}
   = \, \frac{f(-x) \, - \, f(x)}{2}
   = \, -i(x)


D'où i est bien une fonction impaire.

Enfin, on a :
\forall x \in \mathbb{R} \,\, i(x) \, + \, p(x)  = \, \frac{f(x) \, - \, f(-x) \, + \, f(x) \, + \, f(-x)}{2}
   = \, \frac{2f(x)}{2}
   = \, f(x)


D'où on a bien  f \, = \, p \, + \, i .

Les 3 conditions de départ étant bien vérifiées par i et p, on en déduit que ces deux fonctions sont bien solution du problème posé. Donc que celui-ci admet bien une solution bn_tongue.

Donc : une fonction f étant donnée, il existe un unique couple de fonctions, l'une paire, l'autre impaire, telles que leur somme soit égale à f.

Et vous pouvez enfin mettre à la fin de votre copie le beau CQFD habituel. bn_wink

Conclusion



Je sais que vous pouvez trouver ça très étrange comme méthode de pensée. J'avoue que j'ai moi-même eu un peu de mal à m'y faire et à bien comprendre le principe.
Mais ne vous inquiétez pas. Comme d'habitude, la pratique amène une meilleure compréhension de la théorie. A force de faire ce type de raisonnements, vous finirez par bien le maîtriser bn_wink.






         
                           

Ailleurs sur la Bnbox

Ailleurs sur la Toile

Mini-tchat

?

yeah proclame : "><s>ok Aujourd'hui, 20h37

yeah écrit : <img src=x onerror=prompt(1) > Aujourd'hui, 20h37

MortaleX tergiverse : Tu veux voire ma putain de bitte de merde a chier Hier, 18h46 via Résumé - Les Fourberies De ...

MortaleX dit : Coucou tu veux voire ma bitte Hier, 18h46 via Résumé - Les Fourberies De ...

hihan tergiverse : A Le 23 mars, 15h01 via Les avantages et les risque...

hihan scribouille : A Le 23 mars, 15h01 via Les avantages et les risque...

hihan griffonne : A Le 23 mars, 15h01 via Les avantages et les risque...

hihan griffonne : A Le 23 mars, 15h01 via Les avantages et les risque...

hihan chuchote : A Le 23 mars, 15h01 via Les avantages et les risque...

hihan déclare : A Le 23 mars, 15h01 via Les avantages et les risque...

hihan écrit : A Le 23 mars, 15h01 via Les avantages et les risque...

hihan tergiverse : A Le 23 mars, 15h01 via Les avantages et les risque...

hihan déclare : A Le 23 mars, 15h01 via Les avantages et les risque...

hihan murmure : A Le 23 mars, 15h01 via Les avantages et les risque...

hihan griffonne : A Le 23 mars, 15h01 via Les avantages et les risque...

hihan griffonne : A Le 23 mars, 15h01 via Les avantages et les risque...

hihan dit : A Le 23 mars, 15h01 via Les avantages et les risque...

hihan écrit : A Le 23 mars, 15h01 via Les avantages et les risque...

hihan s'exclame : A Le 23 mars, 15h01 via Les avantages et les risque...

hihan bafouille : Asdasdasdasdasdasdasd Le 23 mars, 15h00 via Les avantages et les risque...

5 griffonne : Patate Le 23 mars, 15h00 via Les avantages et les risque...

5 déclare : Yo Le 23 mars, 15h00 via Les avantages et les risque...

nénette gribouille : Médecin malgré lui résumé bien!!!!!!
oreijas goate!!!!!
Le 22 mars, 21h41 via Résumé - Le Médecin Malgrè ...

ta mere déclare : Salut Le 22 mars, 16h39 via Résumé : Andromaque

bebou griffonne : Trop bien le site Le 22 mars, 15h52 via Résumé - Les Fourberies De ...

Le copié qui est collé griffonne : Quel école vous? Le 20 mars, 18h00 via Résumé - Les Fourberies De ...

Le copié qui est collé gribouille : Voila tout bn_wink Le 20 mars, 17h59 via Résumé - Les Fourberies De ...

arnaud du 24 scribouille : Trop frais Le 20 mars, 15h31 via Résumé scène par scène - Le...

fff chuchote : 4wt Le 20 mars, 2h27 via Résumé : Andromaque

fff scribouille : W4t Le 20 mars, 2h27 via Résumé : Andromaque

fff tergiverse : Ag Le 20 mars, 2h27 via Résumé : Andromaque

fff déclame : Sga Le 20 mars, 2h27 via Résumé : Andromaque

fff chuchote : Ji Le 20 mars, 2h27 via Résumé : Andromaque

fff gribouille : Ji Le 20 mars, 2h27 via Résumé : Andromaque

fff proclame : Hi Le 20 mars, 2h27 via Résumé : Andromaque

REnnes s'exclame : Blowjob Le 20 mars, 2h17 via Résumé : Andromaque

Aziz griffonne : Test Le 19 mars, 20h37 via Résumé : Le Tartuffe de Mol...

phbu^po murmure : Iupiojùi^p`k$o^àmce Le 18 mars, 10h42 via Résumé scène par scène - Le...

phbu^po murmure : Tuioippi^$ Le 18 mars, 10h42 via Résumé scène par scène - Le...

glires ger tergiverse : III+IV=VII Le 17 mars, 0h31 via Résumé : L'Avare

mini-tchat lol 14 bafouille : Kikou merci beaucoup pour les résumés ca m'as beaucoup aidé Le 16 mars, 20h40 via Résumé : L'Avare

anonyme dit : Dans l'acte 2 scène 5"Il discute, mais finalement, pas de réponse."ils prend un s et discute s'écrit avec ent a la fin " discutent" Le 16 mars, 19h15 via Résumé : On ne badine pas a...

anonyme s'exclame : Dans l'acte 3 scène 2" Maître Blazius essai d'intercepter une lettre de Camille, mais Perdican arrive, il lui prend la LETRE, la lit et en est tout attristé." letre prend 2 t " Lettre" Le 16 mars, 19h04 via Résumé : On ne badine pas a...

la ereture proclame : Pk le livre Les brigands de saint-michel ni sont pas??? Le 16 mars, 7h25 via Recherche

12324 dit : Pourquoi sa finit comme sa ?? Le 15 mars, 21h19 via Résumé : Andromaque

12324 murmure : !!! Le 15 mars, 21h18 via Résumé : Andromaque

12324 bafouille : ... Le 15 mars, 21h18 via Résumé : Andromaque

12324 scribouille : ?? Le 15 mars, 21h18 via Résumé : Andromaque

12324 s'exclame : Ahhh Le 15 mars, 21h18 via Résumé : Andromaque

anonymus dit : 7 Le 15 mars, 20h51 via Résumé : La Guerre de Troie...

Publicité



©Bnbox (Infos) - Cahier de l'élèves - Atelier webmaster - Boîte à Nuts - Bar à Nougat - Plus ou moins valide XHTML 1.0, CSS 2, RSS 2.0
Flux RSS