La Bnbox !

Créateur de sourires...

Mon compte

S'inscrire

Recherche

Vous êtes ici : Accueil » Cahier de l'élève » Mathématiques » Le raisonnement par analyse-synthèse

Cahier de l'élève



« Article précédent - Sommaire - Article suivant »

Mathématiques : Le raisonnement par analyse-synthèse

Introduction


Dans la série des "grosses méthodes de raisonnement" en mathématiques, je voudrais le petit frère...
Et oui, vous avez deviné, on va recommencer à raisonner ici, mais d'une manière encore différente.
Récapitulons... en Mathématiques, on distingue plusieurs types de raisonnement : le raisonnement direct, le raisonnement par récurrence, le raisonnement par l'absurde, et enfin le raisonnement par analyse-synthèse.

Il est un peu moins utilisé que ses grands frères, mais peut s'avérer très utile pour certaines démonstrations.

Mais alors qu'est-ce que tu attends ? Explique-nous !


Oui, oui, j'y viens j'y viens.

Principe



Je vais d'abord vous donner le principe global de la chose, puis j'expliquerai en détail avec un exemple imagé, et ensuite avec des vrais exemples mathématiques.

Supposons qu'on vous demande de démontrer quelque chose qui vous semble très compliqué au premier abord. Tellement que vous ne savez pas comment faire.
Le raisonnement par analyse-synthèse peut s'avérer une bonne solution. Il se déroule en 2 étapes :

L'Analyse : Supposez que ce que vous voulez démontrer est vrai, et cherchez des conditions nécessaires à satisfaire pour que cela puisse être vrai.

La Synthèse : Vérifiez si la chose qui vérifie ces conditions est bien solution du problème posé.

Bon, vu comme ça, c'est très abstrait bn_wink. Donc on va travailler sur des exemples assez simples : un exemple complètement hors du domaine des mathématiques, pour vous permettre de mieux appréhender le principe du raisonnement; et un autre exemple d'utilisation en mathématiques.

Exemples


Le BN géant

Un jour, on vous demande de prouver l'existence d'un BN au chocolat géant vivant !
A première vue, ça semble assez difficile à faire... Et vous n'avez aucune idée de la manière de procéder.
Alors procédons par Analyse-Synthèse !
  • Première partie, l'analyse : supposons qu'il existe un BN au chocolat géant vivant quelque part dans le monde.
    Si un BN de ce genre existe, il est évident qu'il vivra nécessairement loin de l'eau, parce qu'un BN dans l'eau devient tout mou et se dissous...
    Si ce type de BN existe, il se trouvera nécessairement loin des régions chaudes, sinon son chocolat fondrait et il disparaitrait bn_sad.
    Il sera aussi nécessairement loin des régions très froides, pour ne pas geler.

    Ces conditions nécessaires qu'on vient de trouver réduisent déjà notre champ de recherche. On sait que maintenant, le seul endroit où on peut trouver un BN de ce type, c'est en France.
    Mais la France c'est toujours assez grand. On va donc chercher d'autres conditions nécessaires encore plus restrictives.

    Un grand BN comme ça, ça a besoin de beaucoup de chocolat pour tenir ensemble... Ca doit donc vivre nécessairement près d'une chocolaterie, ou d'une biscuiterie.
    Et en plus, les BN sont créés à Nantes, donc forcément, le grand BN habite près de ses parents, donc près de Nantes.
    Ce qui nous amène directement à la conclusion que le BN géant habite dans la biscuiterie BN.

  • Deuxième partie, la synthèse : nous devons vérifier notre conclusion, c'est-à-dire que nous devons prendre le premier avion pour Nantes (ou le premier TGV bn_tongue), et nous rendre à la biscuiterie pour vérifier que le BN géant s'y trouve.
    Soit on le trouve, et on a bien prouvé qu'il existe.
    Soit on ne le trouve pas, et on a prouvé qu'il n'existe pas, puisqu'il n'est pas à l'endroit où il devait nécessairement être.


(Maintenant, eh bien je vous laisse aller vérifier par vous-même. bn_tongue)


Fonctions paires et impaires

Voici l'énoncé de l'exercice : Soit f une application définie sur \mathbb{R}. Montrer que f s'écrit d'une façon unique comme la somme d'une application paire et d'une application impaire (application est synonyme de fonction dans ce cas).

A première vue, et en essayant différentes méthodes, ce problème paraît difficile à résoudre. Il se peut même que vous n'y arriviez pas bn_tongue. Mais c'est normal.
Pour résoudre ce problème, il faut utiliser le raisonnement par analyse-synthèse.

Allez on est partis !

Première étape : L'Analyse

Soit f une fonction définie sur \mathbb{R}.
Supposons qu'il existe 2 fonctions, que l'on nommera p et i (p pour paire, et i pour impaire, un peu d'originalité bn_tongue), qui soient solution du problème, c'est-à-dire des fonctions telles que :

- p soit paire
- i soit impaire
- f soit la somme de ces deux fonctions, i.e. f \, = \, p \, + \, i

Traduisons ces 3 phrases : ces deux fonctions sont donc telles que :

 \forall x \in \mathbb{R} \, \left\{ \begin{array}{rcl} f(x) \, = \, p(x) \, + \, i(x) \\ p(-x) \, = \, p(x)\\ i(-x) \, = \, -i(x)\\ \end{array} \right.
Jusque là on n'a fait que traduire en rajoutant des x les 3 conditions vérifiées par i et p pour être solutions du problème.
Evidemment, pour l'instant, cela ne nous avance pas à grand chose.
Mais le principe de l'analyse-synthèse, comme pour l'exemple du BN géant, est d'affiner au maximum la recherche pour obtenir à la fin des conditions nécessaires suffisamment restrictives.

On va donc faire quelques petites manipulations sur les 3 "équations" obtenues.

Par exemple, cherchons f(-x). (Oui, j'avoue, il faut parfois faire preuve d'inventivité... Ca peut sembler tomber du ciel, mais au bout d'un moment, vous aurez pris l'habitude, et vous aurez un certain flair pour détecter ce qu'il faut faire.)

D'après les définitions des fonctions paires et impaires, on obtient :

 \forall x \in \mathbb{R} \, f(-x)  = \, p(-x) \, + \, i(-x)
   = \, p(x) \, - \, i(x) \,\,\, (1)


Or on sait qu'on a aussi :

 \forall x \in \mathbb{R} \, f(x)  = \, p(x) \, + \, i(x) \,\,\, (2)


On dispose donc des relations (1) et (2) ci-dessus.
Il faut maintenant en faire quelque chose. Et là, (oh miracle! bn_heureux) on remarque que si on fait la somme de ces deux relations, on aura disparition de la fonction i.
De même on voit que si on fait la différence des deux relations, ce sera la fonction p qui va disparaître.
La preuve :

 (1) \, + \, (2) \, \longrightarrow \forall x \in \mathbb{R} \,\, f(-x) \, + \, f(x) = \, p(x) \, + \, p(x) \, + \, i(x) \, - \, i(x)
= \, 2p(x)


D'où on en tire par simple division : \forall x \in \mathbb{R} \,\, p(x) \, = \, \frac{f(x) \, + \, f(-x)}{2}

D'autre part, on a :
 (1) \, - \, (2) \, \longrightarrow \forall x \in \mathbb{R} \,\, f(-x) \, - \, f(x) = \, p(x) \, - \, p(x) \, - \, i(x) \, - \, i(x)
= \, -2i(x)


D'où on en tire par une division et un petit changement de signe : \forall x \in \mathbb{R} \,\, i(x) \, = \, \frac{f(x) \, - \, f(-x)}{2}

Vous vous en doutez, après cela, on arrive bientôt à la fin de notre analyse... On a assez torturé les formules, et elles n'ont plus rien à nous dire.

Faisons donc une conclusion de l'analyse.
On sait que si f peut s'écrire comme une somme de deux fonctions, l'une paire et l'autre impaire, il est nécessaire que ces fonctions soient de la forme :
\forall x \in \mathbb{R} \,\, p(x) \, = \, \frac{f(x) \, + \, f(-x)}{2}
\forall x \in \mathbb{R} \,\, i(x) \, = \, \frac{f(x) \, - \, f(-x)}{2}
Ceci nous assure aussi que si ces fonctions existent, elles sont uniques (en effet, il n'y a qu'une seule fonction que l'on peut définir de telle manière).

On a bien avancé dans notre travail, et on a fait le plus dur.
Mais tout n'est pas terminé.


Deuxième étape : La Synthèse

Il reste à vérifier si les fonctions p et i trouvées sont bien solution du problème, c'est-à-dire que : p est paire, i est impaire, et f s'écrit comme la somme des deux.

Reprenons les fonctions p et i définies à la fin de notre analyse.
On a alors :
\forall x \in \mathbb{R} \,\, p(-x)  = \, \frac{f(-x) \, + \, f(-(-x))}{2}
   = \, \frac{f(-x) \, + \, f(x)}{2}
   = \, p(x)


D'où p est bien une fonction paire.

De plus:
\forall x \in \mathbb{R} \,\, i(-x)  = \, \frac{f(-x) \, - \, f(-(-x))}{2}
   = \, \frac{f(-x) \, - \, f(x)}{2}
   = \, -i(x)


D'où i est bien une fonction impaire.

Enfin, on a :
\forall x \in \mathbb{R} \,\, i(x) \, + \, p(x)  = \, \frac{f(x) \, - \, f(-x) \, + \, f(x) \, + \, f(-x)}{2}
   = \, \frac{2f(x)}{2}
   = \, f(x)


D'où on a bien  f \, = \, p \, + \, i .

Les 3 conditions de départ étant bien vérifiées par i et p, on en déduit que ces deux fonctions sont bien solution du problème posé. Donc que celui-ci admet bien une solution bn_tongue.

Donc : une fonction f étant donnée, il existe un unique couple de fonctions, l'une paire, l'autre impaire, telles que leur somme soit égale à f.

Et vous pouvez enfin mettre à la fin de votre copie le beau CQFD habituel. bn_wink

Conclusion



Je sais que vous pouvez trouver ça très étrange comme méthode de pensée. J'avoue que j'ai moi-même eu un peu de mal à m'y faire et à bien comprendre le principe.
Mais ne vous inquiétez pas. Comme d'habitude, la pratique amène une meilleure compréhension de la théorie. A force de faire ce type de raisonnements, vous finirez par bien le maîtriser bn_wink.






         
                           

Ailleurs sur la Bnbox

Ailleurs sur la Toile

Mini-tchat

?

sasa chuchote : A très bien.. #grosvent Hier, 20h11 via Résumé du livre : Le Cid de...

sasa murmure : CC Hier, 20h07 via Résumé du livre : Le Cid de...

tutota écrit : Je veux plus petit que sa ... Le 20 février, 22h54 via Résumé : L'Avare

clem murmure : Cc Le 20 février, 16h10 via Résumé - Les Fourberies De ...

clara s'exclame : Lol Le 19 février, 19h08 via Résumé - Le Médecin Malgrè ...

26 écrit : Trop facile Le 18 février, 13h49 via Accueil

26 bafouille : 7 Le 18 février, 13h48 via Accueil

moi bafouille : Coucou Le 16 février, 17h13 via Résumé scène par scène - Le...

lol lol déclame : Psssssssssssssssssssss Le 16 février, 13h34 via Résumé : Le Mariage de Figa...

dhg654 bafouille : *larmes*
C'est trop romantique pour moi
Le 16 février, 12h41 via Boîte à Nuts

dhg654 proclame : C'est si beau...
Si seulement je pouvais moi aussi dire cela à quelqu'un...
Le 16 février, 12h40 via Boîte à Nuts

Hey scribouille : Oui!
C'est le plus beau jour de ma vie!
Le 16 février, 12h39 via Boîte à Nuts

Un amoureux un peu timide tergiverse : +Hey
Veux tu m'épouser?
Le 16 février, 12h38 via Boîte à Nuts

Hey tergiverse : Oh my god I think I love you!
Je t'aime, Un amoureux un peu timide!
Le 16 février, 12h38 via Boîte à Nuts

Un amoureux un peu timide murmure : I love you !!!! Le 16 février, 12h33

d écrit : D Le 16 février, 12h24 via Résumé scène par scène - Le...

d bafouille : D Le 16 février, 12h24 via Résumé scène par scène - Le...

Fiery Blaze proclame : Ca va les bns Le 16 février, 12h22 via Résumé scène par scène - Le...

Fiery Blaze tergiverse : Je rigole Le 16 février, 12h22 via Résumé scène par scène - Le...

Fiery Blaze griffonne : Nan Le 16 février, 12h22 via Résumé scène par scène - Le...

Fiery Blaze murmure : Ultra super mega hyper tres vraiment trop beaucoup pas bon Le 16 février, 12h22 via Résumé scène par scène - Le...

Fiery Blaze chuchote : Trop pourri Le 16 février, 12h21 via Résumé scène par scène - Le...

Fiery Blaze gribouille : Vraiment degeulasse Le 16 février, 12h21 via Résumé scène par scène - Le...

Fiery Blaze dit : Super mauvais Le 16 février, 12h21 via Résumé scène par scène - Le...

Fiery Blaze proclame : Horrible Le 16 février, 12h21 via Résumé scène par scène - Le...

Fiery Blaze écrit : Beurk pas bon Le 16 février, 12h21 via Résumé scène par scène - Le...

Fiery Blaze dit : En fait je trouve ca degoutant Le 16 février, 12h21 via Résumé scène par scène - Le...

Fiery Blaze griffonne : Totalement hyper super absolument vraiment beaucoup tres ultra mega tellement trop BON!!!!!!!!!!!!!!!!! Le 16 février, 12h20 via Résumé scène par scène - Le...

Fiery Blaze proclame : Trop bon. Le 16 février, 12h18 via Résumé scène par scène - Le...

Fiery Blaze s'exclame : Exquis! Le 16 février, 12h18 via Résumé scène par scène - Le...

Fiery Blaze déclare : C'est un regal Le 16 février, 12h18 via Résumé scène par scène - Le...

Fiery Blaze chuchote : Delicieux Le 16 février, 12h17 via Résumé scène par scène - Le...

Fiery Blaze s'exclame : Miam
;P
Le 16 février, 12h17 via Résumé scène par scène - Le...

Fiery Blaze tergiverse : J'aime les BNs Le 16 février, 12h17 via Résumé scène par scène - Le...

Fiery Blaze bafouille : Hey Le 16 février, 12h15 via Résumé scène par scène - Le...

reztyuio déclame : Bonjour Le 15 février, 11h37 via Résumé : Le Tartuffe de Mol...

said murmure : Mort au vache Le 12 février, 13h05 via Résumé : On ne badine pas a...

said chuchote : Skrt Le 12 février, 13h04 via Résumé : On ne badine pas a...

3+1+1+1+1=7 s'exclame : 1+1+1+1+1+1+1=7 Le 12 février, 12h48 via Résumé - Le Médecin Malgrè ...

77 déclame : 77 Le 12 février, 11h42 via Résumé : L'Avare

soso murmure : Tu fais quoi ? Le 10 février, 10h38 via Résumé : L'Avare

lila déclare : Hello ! sa va ? Le 10 février, 10h37 via Résumé : L'Avare

soso murmure : Hello ! Le 10 février, 10h37 via Résumé : L'Avare

lila gribouille : C hyper pratique Le 10 février, 10h37 via Résumé : L'Avare

sofia ttc déclame : Adore se site je le recommende Le 08 février, 17h22 via Résumé - Le Médecin Malgrè ...

Mohamed rah s'exclame : Shnou ka dirou Le 08 février, 16h41 via Romain Gary : La Promesse d...

Azerty tergiverse : As zeerttyu Le 08 février, 16h39 via Romain Gary : La Promesse d...

hy griffonne : Je trouve les résumés beaucoup trop courts mais merci beaucoup quand même ? Le 07 février, 19h02 via Résumé : Andromaque

hy bafouille : Bonjour?? Le 07 février, 19h00 via Résumé : Andromaque

CROTTINETTE déclame : CACA Le 06 février, 15h19 via Résumé - Les Fourberies De ...

Publicité



©Bnbox (Infos) - Cahier de l'élèves - Atelier webmaster - Boîte à Nuts - Bar à Nougat - Plus ou moins valide XHTML 1.0, CSS 2, RSS 2.0
Flux RSS