La Bnbox !

Créateur de sourires...

Mon compte

S'inscrire

Recherche

Vous êtes ici : Accueil » Cahier de l'élève » Mathématiques » Le raisonnement par analyse-synthèse

Cahier de l'élève



« Article précédent - Sommaire - Article suivant »

Mathématiques : Le raisonnement par analyse-synthèse

Introduction


Dans la série des "grosses méthodes de raisonnement" en mathématiques, je voudrais le petit frère...
Et oui, vous avez deviné, on va recommencer à raisonner ici, mais d'une manière encore différente.
Récapitulons... en Mathématiques, on distingue plusieurs types de raisonnement : le raisonnement direct, le raisonnement par récurrence, le raisonnement par l'absurde, et enfin le raisonnement par analyse-synthèse.

Il est un peu moins utilisé que ses grands frères, mais peut s'avérer très utile pour certaines démonstrations.

Mais alors qu'est-ce que tu attends ? Explique-nous !


Oui, oui, j'y viens j'y viens.

Principe



Je vais d'abord vous donner le principe global de la chose, puis j'expliquerai en détail avec un exemple imagé, et ensuite avec des vrais exemples mathématiques.

Supposons qu'on vous demande de démontrer quelque chose qui vous semble très compliqué au premier abord. Tellement que vous ne savez pas comment faire.
Le raisonnement par analyse-synthèse peut s'avérer une bonne solution. Il se déroule en 2 étapes :

L'Analyse : Supposez que ce que vous voulez démontrer est vrai, et cherchez des conditions nécessaires à satisfaire pour que cela puisse être vrai.

La Synthèse : Vérifiez si la chose qui vérifie ces conditions est bien solution du problème posé.

Bon, vu comme ça, c'est très abstrait bn_wink. Donc on va travailler sur des exemples assez simples : un exemple complètement hors du domaine des mathématiques, pour vous permettre de mieux appréhender le principe du raisonnement; et un autre exemple d'utilisation en mathématiques.

Exemples


Le BN géant

Un jour, on vous demande de prouver l'existence d'un BN au chocolat géant vivant !
A première vue, ça semble assez difficile à faire... Et vous n'avez aucune idée de la manière de procéder.
Alors procédons par Analyse-Synthèse !
  • Première partie, l'analyse : supposons qu'il existe un BN au chocolat géant vivant quelque part dans le monde.
    Si un BN de ce genre existe, il est évident qu'il vivra nécessairement loin de l'eau, parce qu'un BN dans l'eau devient tout mou et se dissous...
    Si ce type de BN existe, il se trouvera nécessairement loin des régions chaudes, sinon son chocolat fondrait et il disparaitrait bn_sad.
    Il sera aussi nécessairement loin des régions très froides, pour ne pas geler.

    Ces conditions nécessaires qu'on vient de trouver réduisent déjà notre champ de recherche. On sait que maintenant, le seul endroit où on peut trouver un BN de ce type, c'est en France.
    Mais la France c'est toujours assez grand. On va donc chercher d'autres conditions nécessaires encore plus restrictives.

    Un grand BN comme ça, ça a besoin de beaucoup de chocolat pour tenir ensemble... Ca doit donc vivre nécessairement près d'une chocolaterie, ou d'une biscuiterie.
    Et en plus, les BN sont créés à Nantes, donc forcément, le grand BN habite près de ses parents, donc près de Nantes.
    Ce qui nous amène directement à la conclusion que le BN géant habite dans la biscuiterie BN.

  • Deuxième partie, la synthèse : nous devons vérifier notre conclusion, c'est-à-dire que nous devons prendre le premier avion pour Nantes (ou le premier TGV bn_tongue), et nous rendre à la biscuiterie pour vérifier que le BN géant s'y trouve.
    Soit on le trouve, et on a bien prouvé qu'il existe.
    Soit on ne le trouve pas, et on a prouvé qu'il n'existe pas, puisqu'il n'est pas à l'endroit où il devait nécessairement être.


(Maintenant, eh bien je vous laisse aller vérifier par vous-même. bn_tongue)


Fonctions paires et impaires

Voici l'énoncé de l'exercice : Soit f une application définie sur \mathbb{R}. Montrer que f s'écrit d'une façon unique comme la somme d'une application paire et d'une application impaire (application est synonyme de fonction dans ce cas).

A première vue, et en essayant différentes méthodes, ce problème paraît difficile à résoudre. Il se peut même que vous n'y arriviez pas bn_tongue. Mais c'est normal.
Pour résoudre ce problème, il faut utiliser le raisonnement par analyse-synthèse.

Allez on est partis !

Première étape : L'Analyse

Soit f une fonction définie sur \mathbb{R}.
Supposons qu'il existe 2 fonctions, que l'on nommera p et i (p pour paire, et i pour impaire, un peu d'originalité bn_tongue), qui soient solution du problème, c'est-à-dire des fonctions telles que :

- p soit paire
- i soit impaire
- f soit la somme de ces deux fonctions, i.e. f \, = \, p \, + \, i

Traduisons ces 3 phrases : ces deux fonctions sont donc telles que :

 \forall x \in \mathbb{R} \, \left\{ \begin{array}{rcl} f(x) \, = \, p(x) \, + \, i(x) \\ p(-x) \, = \, p(x)\\ i(-x) \, = \, -i(x)\\ \end{array} \right.
Jusque là on n'a fait que traduire en rajoutant des x les 3 conditions vérifiées par i et p pour être solutions du problème.
Evidemment, pour l'instant, cela ne nous avance pas à grand chose.
Mais le principe de l'analyse-synthèse, comme pour l'exemple du BN géant, est d'affiner au maximum la recherche pour obtenir à la fin des conditions nécessaires suffisamment restrictives.

On va donc faire quelques petites manipulations sur les 3 "équations" obtenues.

Par exemple, cherchons f(-x). (Oui, j'avoue, il faut parfois faire preuve d'inventivité... Ca peut sembler tomber du ciel, mais au bout d'un moment, vous aurez pris l'habitude, et vous aurez un certain flair pour détecter ce qu'il faut faire.)

D'après les définitions des fonctions paires et impaires, on obtient :

 \forall x \in \mathbb{R} \, f(-x)  = \, p(-x) \, + \, i(-x)
   = \, p(x) \, - \, i(x) \,\,\, (1)


Or on sait qu'on a aussi :

 \forall x \in \mathbb{R} \, f(x)  = \, p(x) \, + \, i(x) \,\,\, (2)


On dispose donc des relations (1) et (2) ci-dessus.
Il faut maintenant en faire quelque chose. Et là, (oh miracle! bn_heureux) on remarque que si on fait la somme de ces deux relations, on aura disparition de la fonction i.
De même on voit que si on fait la différence des deux relations, ce sera la fonction p qui va disparaître.
La preuve :

 (1) \, + \, (2) \, \longrightarrow \forall x \in \mathbb{R} \,\, f(-x) \, + \, f(x) = \, p(x) \, + \, p(x) \, + \, i(x) \, - \, i(x)
= \, 2p(x)


D'où on en tire par simple division : \forall x \in \mathbb{R} \,\, p(x) \, = \, \frac{f(x) \, + \, f(-x)}{2}

D'autre part, on a :
 (1) \, - \, (2) \, \longrightarrow \forall x \in \mathbb{R} \,\, f(-x) \, - \, f(x) = \, p(x) \, - \, p(x) \, - \, i(x) \, - \, i(x)
= \, -2i(x)


D'où on en tire par une division et un petit changement de signe : \forall x \in \mathbb{R} \,\, i(x) \, = \, \frac{f(x) \, - \, f(-x)}{2}

Vous vous en doutez, après cela, on arrive bientôt à la fin de notre analyse... On a assez torturé les formules, et elles n'ont plus rien à nous dire.

Faisons donc une conclusion de l'analyse.
On sait que si f peut s'écrire comme une somme de deux fonctions, l'une paire et l'autre impaire, il est nécessaire que ces fonctions soient de la forme :
\forall x \in \mathbb{R} \,\, p(x) \, = \, \frac{f(x) \, + \, f(-x)}{2}
\forall x \in \mathbb{R} \,\, i(x) \, = \, \frac{f(x) \, - \, f(-x)}{2}
Ceci nous assure aussi que si ces fonctions existent, elles sont uniques (en effet, il n'y a qu'une seule fonction que l'on peut définir de telle manière).

On a bien avancé dans notre travail, et on a fait le plus dur.
Mais tout n'est pas terminé.


Deuxième étape : La Synthèse

Il reste à vérifier si les fonctions p et i trouvées sont bien solution du problème, c'est-à-dire que : p est paire, i est impaire, et f s'écrit comme la somme des deux.

Reprenons les fonctions p et i définies à la fin de notre analyse.
On a alors :
\forall x \in \mathbb{R} \,\, p(-x)  = \, \frac{f(-x) \, + \, f(-(-x))}{2}
   = \, \frac{f(-x) \, + \, f(x)}{2}
   = \, p(x)


D'où p est bien une fonction paire.

De plus:
\forall x \in \mathbb{R} \,\, i(-x)  = \, \frac{f(-x) \, - \, f(-(-x))}{2}
   = \, \frac{f(-x) \, - \, f(x)}{2}
   = \, -i(x)


D'où i est bien une fonction impaire.

Enfin, on a :
\forall x \in \mathbb{R} \,\, i(x) \, + \, p(x)  = \, \frac{f(x) \, - \, f(-x) \, + \, f(x) \, + \, f(-x)}{2}
   = \, \frac{2f(x)}{2}
   = \, f(x)


D'où on a bien  f \, = \, p \, + \, i .

Les 3 conditions de départ étant bien vérifiées par i et p, on en déduit que ces deux fonctions sont bien solution du problème posé. Donc que celui-ci admet bien une solution bn_tongue.

Donc : une fonction f étant donnée, il existe un unique couple de fonctions, l'une paire, l'autre impaire, telles que leur somme soit égale à f.

Et vous pouvez enfin mettre à la fin de votre copie le beau CQFD habituel. bn_wink

Conclusion



Je sais que vous pouvez trouver ça très étrange comme méthode de pensée. J'avoue que j'ai moi-même eu un peu de mal à m'y faire et à bien comprendre le principe.
Mais ne vous inquiétez pas. Comme d'habitude, la pratique amène une meilleure compréhension de la théorie. A force de faire ce type de raisonnements, vous finirez par bien le maîtriser bn_wink.






         
                           

Ailleurs sur la Bnbox

Ailleurs sur la Toile

Mini-tchat

?

Cc griffonne : ALGERIE MAROC Hier, 18h12 via Accueil

Ferret_Max scribouille : Http://la-bnbox.fr/38-Resume--L-Avare.cahier Hier, 14h29 via Résumé : L'Avare

Ferret_Max déclare : Ta gueule tier moche Hier, 14h28 via Résumé : L'Avare

sousouubg griffonne : Salut,jrouilleeuuhh Le 16 janvier, 13h34 via Résumé scène par scène - Le...

bg gribouille : Algerie Le 15 janvier, 17h58 via Résumé : On ne badine pas a...

lilicaca déclame : Le la il nous vous ils elle elles je tu on vous elles ils il elle Le 13 janvier, 16h32 via Résumé - Le Médecin Malgrè ...

coincoin griffonne : Par contre Cléone est la confidente à Hermione pas sa suivante Le 10 janvier, 16h52 via Résumé : Andromaque

mesar bafouille : Cool ce site Le 10 janvier, 13h54 via Résumé scène par scène - Le...

mesar s'exclame : Cool ce site Le 10 janvier, 13h54 via Résumé scène par scène - Le...

andro gribouille : Ce livre est incompreensible merci Le 09 janvier, 22h11 via Résumé : Andromaque

Glouglou scribouille : Je déteste le français Le 09 janvier, 18h51 via Biographie de Molière

G dit : F Le 09 janvier, 18h24 via Résumé scène par scène - Le...

hahaha tergiverse : Le pire livre que j'ai jamais lu Le 08 janvier, 20h01 via Résumé : Le Tartuffe de Mol...

ayoub bafouille : Merci parce que javais un magazine literraire a faire sur chaque resumé Le 08 janvier, 18h48 via Résumé - Les Fourberies De ...

vicki gribouille : Ce livre est nul merci pour les resumes Le 07 janvier, 12h43 via Résumé : La Promesse de l'a...

Amina s'exclame : Ce livre set dur a comprendre heureusement qu il y ces résumers. Le 05 janvier, 17h18 via Résumé scène par scène - Le...

liam12344 murmure : Je suis entrain de l'étudier j'éspere que ces bien Le 03 janvier, 12h32 via Résumé - Les Fourberies De ...

dadadarrt dit : Cool lol Le 28 décembre 2017, 16h35 via Résumé - Les Fourberies De ...

drag0nb0rndg dit : Siphano1991? Le 19 décembre 2017, 17h55 via Fiches sur les personnages ...

Siphano1991 bafouille : Bonjour Le 19 décembre 2017, 17h53 via Fiches sur les personnages ...

7 déclame : 7 Le 18 décembre 2017, 10h42 via L'homme et les mouettes

j'aime pas l'ecole tergiverse : Est ce que je suis le seul a ne pas aimer l'ecole ? je pense que non mdrrr Le 17 décembre 2017, 19h21 via Résumé - Le Médecin Malgrè ...

yrtd murmure : Uf Le 17 décembre 2017, 13h10 via Romain Gary : La Promesse d...

de bafouille : 3 +4=7 Le 14 décembre 2017, 17h31 via Résumé - Les Fourberies De ...

DAVID KOUNDA murmure : SKIRIRIR PA PA NOT KETCHUP JUST SOUSE PA PA PAPA NA PA Le 12 décembre 2017, 20h51 via Résumé : On ne badine pas a...

cheie chuchote : Aider moi comment faire un journaal de lecture ? Le 11 décembre 2017, 19h31 via Résumé : Le Tartuffe de Mol...

shaiii la best écrit : Wshhh Le 11 décembre 2017, 17h09 via Les avantages et les risque...

ugjujh s'exclame : Saluuuuut Le 11 décembre 2017, 17h09 via Les avantages et les risque...

ugjujh déclare : Tyvhbyju Le 11 décembre 2017, 17h09 via Les avantages et les risque...

joyce scribouille : Ce roman tres passionant Le 11 décembre 2017, 8h58 via Résumé scène par scène - Le...

joyce chuchote : Quel operation facile Le 11 décembre 2017, 8h53 via Résumé scène par scène - Le...

ok proclame : Qui aurais une carte mentale sur Mr Forestier de Bel-Ami svp? Le 09 décembre 2017, 14h11 via Fiches sur les personnages ...

ok griffonne : Salut Le 09 décembre 2017, 14h10 via Fiches sur les personnages ...

mamou murmure : Mamou 278 Le 08 décembre 2017, 11h48 via Fiches sur les personnages ...

Dranreb dit : Merci pour le résumé des Fourberie de Scapin ! Mais pourriez-vous faire relire le texte par un élève de CM2 pour qu'il corrige la douzaine de GROSSES fôtteu qu'il contient ? Ça serait bien ! Le 05 décembre 2017, 14h15 via Accueil

la perle des ocens chuchote : Hum Le 04 décembre 2017, 18h03 via Fiches sur les personnages ...

bruh s'exclame : On 3+4 pas nous ?! Le 04 décembre 2017, 8h19 via Résumé - Le Médecin Malgrè ...

1% déclare : C'est moi à 99% Le 03 décembre 2017, 12h48 via Résumé : Le Tartuffe de Mol...

la mouche proclame : Je suis un bourdon Le 03 décembre 2017, 11h52 via Résumé : Le Tartuffe de Mol...

meuh bafouille : 85+
3---9339=12
Le 30 novembre 2017, 17h53 via Résumé scène par scène - Le...

1234 scribouille : D Le 26 novembre 2017, 12h17 via Fiches sur les personnages ...

Akuu s'exclame : Yo Le 24 novembre 2017, 16h09 via Résumé : Andromaque

oui chuchote : Voila Le 23 novembre 2017, 19h15 via Résumé : Andromaque

arif tergiverse : Trop facile Le 22 novembre 2017, 18h53 via Résumé - Le Médecin Malgrè ...

Tibo proclame : Damn les gens Le 19 novembre 2017, 13h53 via Résumé - Le Médecin Malgrè ...

BERENICE bafouille : SALUUUUT Le 16 novembre 2017, 20h55 via Accueil

kenfirstar s'exclame : Salut Le 16 novembre 2017, 17h02 via Accueil

kenfirstar murmure : JE SUIS NOUVEAU ALOR SALUT SAVA Le 16 novembre 2017, 16h19

kkljlk chuchote : Yoloooooooooooo Le 15 novembre 2017, 20h15 via Fiches sur les personnages ...

crousthibax gribouille : Findus Le 14 novembre 2017, 16h59 via Résumé : Andromaque

Publicité



©Bnbox (Infos) - Cahier de l'élèves - Atelier webmaster - Boîte à Nuts - Bar à Nougat - Plus ou moins valide XHTML 1.0, CSS 2, RSS 2.0
Flux RSS