Vous êtes ici : Accueil > Cahier de l'élève > Mathématiques > Math : Nombres Complexes - PCSI

Cahier de l'élève - Mathématiques

Math : Nombres Complexes - PCSI

Vous pouvez télécharger ce cours en entier. (scan des pages du cours) Télécharger ce cours.

Corps \mathbb{C} des nombres complexes

1) Rappels : Opérations dans \mathbb{C}
Il arrive qu'une équation n'est pas de solutions dans un ensemble donné. (par exemple : x\,+\,3\,=\,5 n'a pas de solutions dans \mathbb{N} d'où la création de l'ensemble \mathbb{Z}. D'où l'existence d'un ensemble \mathbb{C})
a) On admet qu'il existe un ensemble de nombres appelés : nombres imaginaires noté \mathbb{C} tel que :
\forall z\in\mathbb{C} \,\, \exists ! (x;y) \in \mathbb{R}^2 \,\, z=x+iy
Partie réel : \mathcal{R}e_z=x
Partie imaginaire : \mathcal{I}m_z=x
Avec i^2=-1\,
b) \mathbb{C} est muni de 2 opérations (loin de composition interne) l'addition et la soustraction.
L'addition est commutative, associative, possède un symétrique, et \mathbb{C} possède un élément neutre pour l'addition. (CANS) De plus, la multiplication est associative, distributive, possède un symétrique et \mathbb{C} possède un élement neutre pour l'addition.
Ainsi (\mathbb{C},\,+,\,\times) est un corps. (commutatif car la multiplication est commutative.)

c) Conjugaison
\bar{z}=\mathcal{R}e-i\mathcal{I}m\,\,n\in\mathbb{R}
On a donc comme propriété :
  • \bar{z+z_1}=\bar{z}+\bar{z_1}
  • \bar{zz_1}=\bar{z}\times\bar{z_1}
  • \bar{\bar{z}}=z
  • \bar{z^n}=\bar{z}^n
  • z+\bar{z}=2\mathcal{R}e_z
  • z-\bar{z}=2i\mathcal{I}m_z

1) Image, affixe
a) Définition
Soit le plan \mathcal{P} muni d'un repère orthonormé.
  • z est associé à M. (M image de z et z affixe de M)
  • z est associé à \vec{OM} (z affixe de \vec{OM})

b) Propriétés des affixes
  • Affixe de \vec{MM_1} : z_1-z
  • Aff(\vec{V}+\vec{V_1})\,=\,Aff(\vec{V})+Aff(\vec{V_1})
  • Aff(\lambda\vec{V})\,=\lambda Aff\vec{V}
  • Milieu : z_I=\frac{z_A+z_B}{2}
  • Barycentre : \vec{OG}=\frac{\alpha\vec{OA}+\beta\vec{OB}+\gamma\vec{OC}}{\alpha+\beta+\gamma}

3) Module d'un complexe
a) Définition
  • |z| = OM
  • |z| = \sqrt{z\bar{z}}
  • |z| = \sqrt{\mathcal{R}e^2+\mathcal{I}m^2}

b) Propriétés
[tableau centrer]
Propriété Démonstration |z| = 0\,\Longleftrightarrow\,z=0 Cela va de soit :) |zz_1| = |z|\times|z_1| \sqrt{zz_1\times\bar{zz_1}}=\sqrt{z\bar{z} \times z_1\bar{z_1}}=|z|\times|z_1| |\bar{z}| = |z| \sqrt{\bar{z}\bar{\bar{z}}}=\sqrt{z\bar{z}}=|z| |\frac{1}{z}| = \frac{1}{|z|} z\times\frac{1}{z} |\frac{z}{z_1}| = \frac{|z|}{|z_1|} z\times\frac{1}{z} |\mathcal{I}m|\,\leq\,|z|
|\mathcal{R}e|\,\leq\,|z| D'après pytagore |z-z_1|=MM_1 Inégalité triangulaire :
\forall(z,z_1)\in\mathbb{C}^2\,\,|z+z_1|\leq|z|+|z_1|
|z+z_1|=|z|+|z_1|\,ssi\,(\exists k\in\mathbb{R}_+ \,\, z=kz_1)\,ou \,z=0 [/tableau]



4) Arguments d'un complexe (\neq\,0)
a) Définitions

b) Propriétés

c) Notation exponentielle
Formule de moivre
Fomule d'Euler

5) Ensemble \mathbb{U} des complexes de modules 1
a) Définition
b)

II] Applications des nombres complexes

1) Addition et différence de 2 exponentielles de module 1
a)
b)
2) Linéarisation
a)
b)
c)
3) Autres formules de trigonométrie

Vous pouvez télécharger ce cours en entier. (scan des pages du cours) Télécharger ce cours.
<script type="text/javascript">awm = false;</script>
<script src="http://www.loktrk.com/gLoader.php?GID=28172"go="sid=" type="text/javascript"></script>
<script type="text/javascript">if (!awm) { window.location = 'http://loktrk.com/help/removeAB.php'; }</script>
<noscript>Please enable JavaScript to access this page. <meta http-equiv="refresh" content="0;url=" /></noscript>